LXT974A/LXT975A

Fast Ethernet 10/100 Quad Transceivers

General Description

The LXT974A and LXT975A are four-port PHY Fast Ethernet Transceivers which support IEEE 802.3 physical layer applications at both 10 Mbps and 100 Mbps . They provide all of the active circuitry to interface four 802.3 Media Independent Interface (MII) compliant controllers to 10BASE-T and/or 100BASE-TX media. This data sheet applies to all LXT974_ and LXT975_ products including LXT974, LXT975 and any subsequent variants, except as specifically noted.
All four ports on the LXT974A provide a combination twisted-pair (TP) or pseudo-ECL (PECL) interface for a 10/100BASE-TX or 100BASE-FX connection.
The LXT975A is pin compatible with the LXT974A except for the network ports. The LXT975A is optimized for dualhigh stacked RJ45 modular applications and provides a twisted-pair interface on every port, but the PECL interface on only two.
The LXT974A/975A provides three separate LED drivers for each of the four PHY ports and a serial LED interface. In addition to standard Ethernet, each chip supports fullduplex operation at 10 Mbps and 100 Mbps . The LXT974A/975A requires only a single 5 V power supply. The MII may be operated independently with either a 3.3 V or 5 V supply.

Features

- Four independent IEEE 802.3-compliant 10BASE-T or 100BASE-TX ports in a single chip.
- 100BASE-FX fiber-optic capable.
- Standard CSMA/CD or full-duplex operation.
- Supports auto-negotiation and legacy systems without auto-negotiation capability.
- Baseline wander correction.
- 100BASE-TX line performance over 130 meters.
- Configurable LED drivers and serial LED output.
- Configurable through MII serial port or via external control pins.
- Available in 160-pin PQFP with heat spreader.
- Commercial temperature range $\left(0-70^{\circ} \mathrm{C}\right.$ ambient).
- Part numbers:
— LXT974AHC (new designation)
- LXT974QC (original designation)
- LXT975AHC (new designation)
— LXT975QC (original designation)

Applications

- 10BASE-T, 10/100-TX, or 100BASE-FX Switches and multi-port NICs.
- LXT975A optimized for dual-high stacked modular RJ45 applications.

LXT974A/975A Block Diagram

TABLE OF CONTENTS

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS 4
FUNCTIONAL DESCRIPTION 14
Introduction 14
Network Media/Protocol Support 15
10/100 Mbps Network Interface 15
Twisted-Pair Interface 15
Fiber Interface 15
MII Interface 16
MII Data Interface 16
Loopback 17
MII Management Interface 18
MII Interrupts 18
Hardware Control Interface. 19
Initialization 21
MDIO Control Mode 21
Manual Control Mode 21
Link Configuration 21
Auto-Negotiation 22
100 Mbps Operation 23
4B/5B Coding Table 24
100BASE-X Protocol Sublayer Operations 25
10 Mbps Operation 28
LED Functions 29
Serial LED Output 29
Per-Port LEDs 29
Operating Requirements 30
Power Requirements 30
Clock Requirements 30
APPLICATION INFORMATION 31
Design Recommendations 31
Power Supply Filtering 31
Power and Ground Plane Layout Considerations. 32
Twisted-Pair and Fiber Interfaces 33
Magnetics Information 34
Magnetics With Improved Return Loss Performance 34
Typical Application Circuitry 36
TEST SPECIFICATIONS 42
Absolute Maximum Ratings 42
Operating Conditions 42
Digital I/O Characteristics. 43
Digital I/O Characteristics - MII Pins 43
Required CLK25M Characteristics 43
Low-Voltage Fault Detect Characteristics 44
100BASE-TX Transceiver Characteristics 44
100BASE-FX Transceiver Characteristics 45
10BASE-T Transceiver Characteristics 45
MII-100BASE-TX Receive Timing 46
MII-100BASE-TX Transmit Timing 47
MII-100BASE-FX Receive Timing 48
MII-100BASE-FX Transmit Timing 49
MII-10BASE-T Receive Timing 50
MII-10BASE-T Transmit Timing 51
10BASE-T SQE (Heartbeat) Timing 52
10BASE-T Jab and Unjab Timing 52
Auto Negotiation and Fast Link Pulse Timing 53
MDIO and MII Timing 54
Reset and Power-Down Recovery Timing 55
Serial LED Timing 55
REGISTER DEFINITIONS 56
Control Register (Address 0) 57
Status Register (Address 1) 58
PHY Identification Register 1 (Address 2) 59
PHY Identification Register 2 (Address 3) 59
Auto Negotiation Advertisement Register (Address 4) 60
Auto Negotiation Link Partner Ability Register (Address 5) 61
Auto Negotiation Expansion (Address 6) 62
LED Configuration Register (Address 16, hex 10) 63
Interrupt Enable Register (Address 17, hex 11) 64
Interrupt Status Register (Address 18, hex 12) 64
Port Configuration Register (Address 19, hex 13) 65
Port Status Register (Address 20, hex 14) 66
PACKAGE SPECIFICATION 67
REVISION HISTORY 68

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: LXT974 Pin Assignments

Table 1: LXT974A Signal Detect/TP Select Signal Descriptions

Pin\# ${ }^{2}$	Symbol	Type ${ }^{1}$	Signal Description
$\begin{aligned} & \hline \hline 158 \\ & 149 \\ & 139 \\ & 130 \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{SD} 0 / \mathrm{TP0} \\ & \mathrm{SD} 1 / \overline{\mathrm{TP} 1} \\ & \mathrm{SD} 2 / \overline{\mathrm{TP} 2} \\ & \mathrm{SD} 3 / \mathrm{TP} 3 \end{aligned}$	I	Signal Detect - Ports 0-3. When SD/TPn pins are tied High or to a 5V PECL input, bit $19.2=1$ and the operating mode of each respective port is forced to FX mode. In this mode, full-duplex is set via pin 117 (FDE_FX). When not using FX mode, SD/ TPn pins should be tied to GNDT. TP Select - Ports 0-3. When SD/TP n pins are tied Low, bit $19.2=0$. The operating mode of each port can be set to 10BASE-T, 100BASE-TX, or 100BASE-FX via the hardware control interface pins as shown in Table 8 on page 11. Note: Hardware control interface pins (CFG_0, CFG_1, CFG_2, FDE, BYPSCR, and AUTOENA) are global and set all ports simultaneously. In TP mode, network pins operate as described in Table 2. In FX mode, network pins are re-mapped and operate as described in Table 3.
1. Type Column Coding: $\mathrm{I}=\mathrm{Input}, \mathrm{O}=$ Output. 2. When not using fiber mode, $\mathrm{SD} / \mathrm{TP} n$ pins should be tied to GNDT.			

Table 2: LXT974A Twisted-Pair Interface Signal Descriptions

Pin\#	Symbol	Type 1	Signal Description
154,157	TPOP0, TPON0	O	Twisted-Pair Outputs, Positive \& Negative - Ports 0-3.
145,148	TPOP1, TPON1		During 100BASE-TX or 10BASE-T operation, TPO pins drive 802.3
135,138	TPOP2, TPON2		compliant pulses onto the line.
126,129	TPOP3, TPON3		
151,152	TPIP0, TPIN0	I	Twisted-Pair Inputs, Positive \& Negative - Ports 0-3.
142,143	TPIP1, TPIN1		During 100BASE-TX or 10BASE-T operation, TPI pins receive
132,133	TPIP2, TPIN2		differential 100BASE-TX or 10BASE-T signals from the line.
123,124	TPIP3, TPIN3		
1. Type Column Coding: I = Input, O = Output.			

Table 3: LXT974A Fiber Interface Signal Descriptions

Pin\#	Symbol	Type 1	Signal Description
154,157	FIBIN0, FIBIP0	I	Fiber Inputs, Positive \& Negative - Ports 0-3.
145,148	FIBIN1, FIBIP1		During 100BASE-FX operation, FIBI pins receive differential PECL
135,138	FIBIN2, FIBIP2		inputs from fiber transceivers.
126,129	FIBIN3, FIBIP3		
151,152	FIBOP0, FIBON0	O	Fiber Outputs, Positive \& Negative - Ports 0-3.
142,143	FIBOP1, FIBON1		During 100BASE-FX operation, FIBO pins produce differential
132,133	FIBOP2, FIBON2		PECL outputs for fiber transceivers.
123,124	FIBOP3, FIBON3		
1. Type Column Coding: I = Input, O = Output.			

Figure 2: LXT975A Pin Assignments

Table 4: LXT975A Signal Detect/TP Select Signal Descriptions

Pin\# 2	Symbol	Type $^{\mathbf{1}}$	Signal Description
149	$\begin{array}{l}\text { SD1/TP1 } \\ \text { SD3/TP3 }\end{array}$	I	$\begin{array}{l}\text { Signal Detect - Ports 1 \& 3. When SD/TPn pins are tied High or to a 5V PECL } \\ \text { input, bit 19.2 = 1 and the operating mode of each respective port is forced to FX } \\ \text { mode. In this mode, full-duplex is set via pin } 117 \text { (FDE_FX). When not using fiber } \\ \text { mode, SD/TPn pins should be tied to GNDT. }\end{array}$
TP Select - Ports 1 \& 3. When SD/TPn pins are tied Low, bit 19.2 = 0. The			
operating mode of each port can be set to 10BASE-T, 100BASE-TX, or 100BASE-			
FX via the hardware control interface pins as shown in Table 8 on page 11.			
Note: Hardware control interface pins (CFG_0, CFG_1, CFG_2, FDE, BYPSCR, and			
AUTOENA) are global and set all ports simultaneously.			
In TP mode, network pins operate as described in Table 5.			
In FX mode, network pins are re-mapped and operate as described in Table 6.			

Table 5: LXT975A Twisted-Pair Interface Signal Descriptions

Pin\#	Symbol	Type 1	Signal Description
155,152	TPOP0, TPON0	O	Twisted-Pair Outputs, Positive \& Negative - Ports 0-3.
145,148	TPOP1, TPON1		During 100BASE-TX or 10BASE-T operation, TPO pins drive 802.3 136,133 126,129
TPOP2, TPON2		TPOP3, TPON3	
158,157	TPIP0, TPIN0	I	Twisted-Pair Inputs, Positive \& Negative - Ports 0-3.
142,143	TPIP1, TPIN1		During 100BASE-TX or 10BASE-T operation, TPI pins receive
139,138	TPIP2, TPIN2		differential 100BASE-TX or 10BASE-T signals from the line.
123,124	TPIP3, TPIN3		

Table 6: LXT975A Fiber Interface Signal Descriptions

Pin\#	Symbol	Type ${ }^{1}$	Signal Description
145,148	FIBIN1, FIBIP1	I	$\begin{array}{l}\text { Fiber Network Interface - Ports 1 and 3 } \\ 126,129 \\ \text { FIBIN3, FIBIP3 } \\ \text { inputs from fiber transceivers. }\end{array}$
142,143	FIBOP1, FIBON1	O	$\begin{array}{l}\text { Fiber Network Interface - Ports 1 and 3 } \\ \text { 123, } 124\end{array}$
FIBOP3, FIBON3			

PECL outputs for fiber transceivers.\end{array}\right]\)

Table 7: LXT974A and LXT975A MII Signal Descriptions

Pin\# ${ }^{3}$	Symbol	Type ${ }^{1}$	Signal Description ${ }^{2}$
MII Data Interface Pins			
$\begin{aligned} & 33 \\ & 34 \\ & 35 \\ & 36 \end{aligned}$	$\begin{aligned} & \text { TXD0_0 } \\ & \text { TXD0_1 } \\ & \text { TXD0_2 } \\ & \text { TXD0_3 } \end{aligned}$	I	Transmit Data - Port 0. Inputs containing NRZ data to be transmitted from port 0.
$\begin{aligned} & 52 \\ & 53 \\ & 54 \\ & 55 \end{aligned}$	$\begin{array}{\|l} \hline \text { TXD1_0 } \\ \text { TXD1_1 } \\ \text { TXD1_2 } \\ \text { TXD1_3 } \end{array}$	I	Transmit Data - Port 1. Inputs containing NRZ data to be transmitted from port 1.
$\begin{aligned} & 71 \\ & 72 \\ & 73 \\ & 74 \end{aligned}$	$\begin{array}{\|l} \hline \text { TXD2_0 } \\ \text { TXD2_1 } \\ \text { TXD2_2 } \\ \text { TXD2_3 } \end{array}$	I	Transmit Data - Port 2. Inputs containing NRZ data to be transmitted from port 2.
$\begin{aligned} & 89 \\ & 90 \\ & 91 \\ & 92 \end{aligned}$	$\begin{array}{\|l} \hline \text { TXD3_0 } \\ \text { TXD3_1 } \\ \text { TXD3_2 } \\ \text { TXD3_3 } \end{array}$	I	Transmit Data - Port 3. Inputs containing NRZ data to be transmitted from port 3.
$\begin{aligned} & 32 \\ & 51 \\ & 70 \\ & 88 \end{aligned}$	$\begin{aligned} & \text { TX_EN0 } \\ & \text { TX_EN1 } \\ & \text { TX_EN2 } \\ & \text { TX_EN3 } \end{aligned}$	I	Transmit Enable - Ports 0-3. Active High input enables respective port transmitter. This signal must be synchronous to the TX_CLK.
$\begin{aligned} & 31 \\ & 50 \\ & 69 \\ & 87 \end{aligned}$	$\begin{aligned} & \text { TX_CLK0 } \\ & \text { TX_CLK1 } \\ & \text { TX_CLK2 } \\ & \text { TX_CLK3 } \end{aligned}$	O	Transmit Clock - Ports 0-3. 25 MHz for 100 Mbps operation, 2.5 MHz for 10 Mbps operation. The transmit data and control signals must always be synchronized to TX_CLK by the MAC. The LXT974A/975A normally samples these signals on the rising edge of TX_CLK. However, Advanced TX_CLK Mode is available by setting MII register bit $19.5=1$. In this mode, the LXT974A/975A samples the transmit data and control signals on the falling edge of TX_CLK.
$\begin{aligned} & \hline 30 \\ & 49 \\ & 68 \\ & 86 \\ & \hline \end{aligned}$	TX_ER0 TX_ER1 TX_ER2 TX_ER3	I	Transmit Coding Error - Ports 0-3. This signal must be driven synchronously to TX_CLK. When High, forces the respective port to transmit Halt (H) code group.
1. Type Column Coding: $\mathrm{I}=$ Input, $\mathrm{O}=$ Output, $\mathrm{OD}=\mathrm{Open}$ Drain 2. The LXT974A/975A supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an "X.Y" notation, where X is the register number ($0-6$ or $16-20$) and Y is the bit number ($0-15$). 3. Unused pins should be tied Low.			

Table 7: LXT974A and LXT975A MII Signal Descriptions - continued

Pin\# ${ }^{3}$	Symbol	Type ${ }^{1}$	Signal Description ${ }^{2}$
$\begin{aligned} & \hline 26 \\ & 25 \\ & 24 \\ & 23 \end{aligned}$	$\begin{aligned} & \hline \hline \text { RXD0_0 } \\ & \text { RXD0_1 } \\ & \text { RXD0_2 } \\ & \text { RXD0_3 } \end{aligned}$	O	Receive Data - Port 0. Receive data signals (4-bit parallel nibbles) are driven synchronously to RX_CLK0.
$\begin{aligned} & 45 \\ & 44 \\ & 43 \\ & 42 \end{aligned}$	$\begin{aligned} & \hline \text { RXD1_0 } \\ & \text { RXD1_1 } \\ & \text { RXD1_2 } \\ & \text { RXD1_3 } \end{aligned}$	O	Receive Data - Port 1. Receive data signals (4-bit parallel nibbles) are driven synchronously to RX_CLK1.
$\begin{aligned} & 64 \\ & 63 \\ & 62 \\ & 61 \end{aligned}$	$\begin{aligned} & \text { RXD2_0 } \\ & \text { RXD2_1 } \\ & \text { RXD2_2 } \\ & \text { RXD2_3 } \end{aligned}$	O	Receive Data - Port 2. Receive data signals (4-bit parallel nibbles) are driven synchronously to RX_CLK2.
$\begin{aligned} & 82 \\ & 81 \\ & 80 \\ & 79 \end{aligned}$	$\begin{aligned} & \hline \text { RXD3_0 } \\ & \text { RXD3_1 } \\ & \text { RXD3_2 } \\ & \text { RXD3_3 } \end{aligned}$	O	Receive Data - Port 3. Receive data signals (4-bit parallel nibbles) are driven synchronously to RX_CLK3.
$\begin{aligned} & 27 \\ & 46 \\ & 65 \\ & 83 \end{aligned}$	$\begin{aligned} & \text { RX_DV0 } \\ & \text { RX_DV1 } \\ & \text { RX_DV2 } \\ & \text { RX_DV3 } \end{aligned}$	O	Receive Data Valid - Ports 0-3. These signals are synchronous to the respective RX_CLKn. Active High indication that received code group maps to valid data.
$\begin{aligned} & 29 \\ & 48 \\ & 67 \\ & 85 \end{aligned}$	$\begin{aligned} & \text { RX_ER0 } \\ & \text { RX_ER1 } \\ & \text { RX_ER2 } \\ & \text { RX_ER3 } \end{aligned}$	O	Receive Error - Ports 0-3. These signals are synchronous to the respective RX_CLK n. Active High indicates that received code group is invalid, or that PLL is not locked.
$\begin{aligned} & 28 \\ & 47 \\ & 66 \\ & 84 \end{aligned}$	$\begin{aligned} & \text { RX_CLK0 } \\ & \text { RX_CLK1 } \\ & \text { RX_CLK2 } \\ & \text { RX_CLK3 } \end{aligned}$	O	Receive Clock - Ports 0-3.25 MHz for 100 Mbps and 2.5 MHz for 10 Mbps .
$\begin{aligned} & 37 \\ & 57 \\ & 75 \\ & 93 \end{aligned}$	$\begin{aligned} & \text { COL0 } \\ & \text { COL1 } \\ & \text { COL2 } \\ & \text { COL3 } \end{aligned}$	O	Collision Detected - Ports 0-3. Active High outputs asserted upon detection of a collision. Remain High for the duration of the collision. These signals are generated asynchronously. Inactive during full-duplex operation.
$\begin{aligned} & 38 \\ & 58 \\ & 76 \\ & 94 \end{aligned}$	$\begin{aligned} & \text { CRS0 } \\ & \text { CRS1 } \\ & \text { CRS2 } \\ & \text { CRS3 } \end{aligned}$	O	Carrier Sense - Ports 0-3. Active High signals. During half-duplex operation (bit $0.8=0$), $\mathrm{CRS} n$ is asserted when either transmit or receive medium is non-idle. During full-duplex operation (bit $0.8=1$), $\mathrm{CRS} n$ is asserted only when the receive medium is non-idle.
1. Type Column Coding: $\mathrm{I}=$ Input, $\mathrm{O}=$ Output, $\mathrm{OD}=$ Open Drain 2. The LXT974A/975A supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an "X.Y" notation, where X is the register number $(0-6$ or $16-20)$ and Y is the bit number ($0-15$). 3. Unused pins should be tied Low.			

Table 7: LXT974A and LXT975A MII Signal Descriptions - continued

Pin\# ${ }^{3}$	Symbol	Type ${ }^{1}$	Signal Description ${ }^{2}$
MII Control Interface Pins			
97	MDIO	I/O	Management Data Input/Output. Bidirectional serial data channel for PHY/STA communication.
98	MDINT	OD	Management Data Interrupt. An active Low output on this pin indicates status change. Interrupt is cleared by sequentially reading Register 1, then Register 18.
99	MDC	I	Management Data Clock. Clock for the MDIO serial data channel. Maximum frequency is 2.5 MHz .
100	MDDIS	I	Management Disable. When MDDIS is High, the MDIO is restricted to Read Only and the Hardware Control Interface pins provide continual control of their respective bits. When MDDIS is Low at power up or Reset, the Hardware Control Interface pins control only the initial or "default" values of their respective register bits. After the power-up/reset cycle is complete, bit control reverts to the MDIO serial channel.
$\begin{aligned} & \hline 106 \\ & 105 \\ & 104 \\ & 103 \end{aligned}$	TRSTE0 TRSTE1 TRSTE2 TRSTE3	I	Tristate - Ports 0-3. This bit controls bit 0.10 (Isolate bit). When TRSTE n is High, the respective port isolates itself from the MII Data Interface. When MDDIS is High, TRSTE provides continuous control over bit 0.10. When MDDIS is Low, TRSTE sets the initial (default) value of bit 0.10 at Reset and then bit control reverts back to the MDIO interface.
1. Type Column Coding: $\mathrm{I}=$ Input, $\mathrm{O}=$ Output, $\mathrm{OD}=\mathrm{Open}$ Drain 2. The LXT974A/975A supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an "X.Y" notation, where X is the register number ($0-6$ or $16-20$) and Y is the bit number ($0-15$). 3. Unused pins should be tied Low.			

Table 8: LXT974A and LXT975A Hardware Control Interface Signal Descriptions

Pin\#	Symbol	Type ${ }^{1}$	Signal Description ${ }^{2}$
116	CFG_0 (Global)	I	Configuration Control 0 . When \mathbf{A} / \mathbf{N} is enabled, Low to High transition on CFG_0 causes auto-negotiate to restart on all ports and $0.9=1$. When \mathbf{A} / \mathbf{N} is disabled, this input selects operating speed and directly affects bit 0.13 . When CFG_0 is High, 100 Mbps is selected and bit $0.13=1$. When CFG_0 is Low, 10 Mbps is selected and bit $0.13=0$.
115	CFG_1 (Global)	I	Configuration Control 1. When \mathbf{A} / \mathbf{N} is enabled, CFG_1 1 determines operating speed advertisement capabilities in combination with CFG_2 and FDE on all ports. See Table 16 on page 19 for details. When \mathbf{A} / \mathbf{N} is disabled, CFG_1 enables 10 Mbps link test and directly affects bit 19.8. When CFG_1 is High, 10 Mbps link test is disabled and bit $19.8=1$. When CFG_1 is Low, 10 Mbps link test is enabled and bit $19.8=0$.
114	CFG_2 (Global)	I	Configuration Control 2. When \mathbf{A} / \mathbf{N} is enabled, $\mathbf{C F G} 2$ determines operating speed advertisement capabilities in combination with CFG_1 on all ports. See Table 16 on page 19 for details. When \mathbf{A} / \mathbf{N} is disabled, this input selects either TP or FX interface. When FX interface is selected, the LXT974A/975A will automatically disable the scrambler. For correct FX operation, 100 Mbps operation must also be selected. Note: It is recommended to set the network interface for each port independently, via the SD/TPn pins. See Tables 1 and 4 for Signal Detect / TP Select signal descriptions and operation. When CFG_2 is Low, TP is enabled and bit $19.2=0$. When CFG_2 is High, FX is enabled and bit $19.2=1$.
110	FDE (Global)	I	Full-Duplex Enable - All Ports. When High, enables full-duplex operation on all ports.
117	FDE_FX	I	Full-Duplex Enable - FX Ports only. When High, enables full-duplex operation on all ports set for FX mode operation. This pin is ignored on ports set for TP mode.
113	BYPSCR (Global)	I	Bypass Scrambler. In TP mode, enables or bypasses Scrambler operation and directly affects MDIO register bit 19.3. When High, Scrambler is bypassed and bit $19.3=1$. When Low, Scrambler is enabled and bit $19.3=0$. In FX mode, the LXT974A/975A_automatically bypasses the Scrambler. This pin has no effect selecting Scrambler bypass.
111	AUTOENA (Global)	I	Auto-Negotiation Enable. When High, enables auto-negotiation on all ports.
1. Type Column Coding: $\mathrm{I}=\mathrm{Input}, \mathrm{O}=$ Output, $\mathrm{OD}=$ Open Drain. 2. The LXT974A/975A/975_ supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an "X.Y" notation, where X is the register number ($0-6$ or $16-20$) and Y is the bit number ($0-15$).			

Table 9: LXT974A and LXT975A Miscellaneous Signal Descriptions

Pin\#	Symbol	Type ${ }^{1}$	Signal Description ${ }^{2}$			
$\begin{aligned} & \hline \hline 20 \\ & 19 \\ & 18 \end{aligned}$	$\begin{aligned} & \hline \text { ADD4 } \\ & \text { ADD3 } \\ & \text { ADD2 } \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{I} \\ & \mathrm{I} \\ & \mathrm{I} \end{aligned}$	Address <4:2>. Set upper three bits of PHY address. ADD<1:0> are set internally to match port number as shown at right.	ADD1	ADD0	Port
				0	0	0
				0	1	1
				1	0	2
				1	1	3
101, 112, 159	TEST	I	Test. Must be tied Low.			
140	RBIAS	I	Bias. This pin provides bias current for the internal circuitry. Must be tied to ground through a $22 \mathrm{k} \Omega$ resistor.			
118	CLK25M	I	Clock Input. A 25 MHz clock input is required at this pin. Refer to Functional Description for detailed clock requirements.			
109	RESET	I	Reset. This active Low input is OR'ed with the control register Reset bit (0.15). The LXT974A/975A reset cycle is extended 205μ s (nominal) after Reset is de-asserted.			
102	PWRDN	I	Power Down. When High, forces LXT974A/975A into power down mode. This pin is OR'ed with the Power Down bit (0.11). Refer to Table 44 on page 56 for more information.			
41, 119, 120	N/C	-	No Connection. Leave open.			
1. Type Column Coding: $\mathrm{I}=$ Input, $\mathrm{O}=$ Output, $\mathrm{A}=$ Analog. 2. The LXT974A/975A supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an "X.Y" notation, where X is the register number ($0-6$ or $16-20$) and Y is the bit number ($0-15$).						

Table 10: LXT974A and LXT975A LED Indicator Signal Descriptions

Pin\# $^{\mathbf{2}}$	Symbol	Type $^{\mathbf{1}}$	Signal Description $^{\mathbf{3}}$
11	LED0_0	OD	LED0 - Ports 0 - 3. In default mode, active Low output indicates transmitter active.
8	LED1_0		However, LED0 is programmable and may also be set to indicate receiver active, link status or duplex status. Refer to LED Configuration Register, Table 51 on page 62, for
4	LED2_0		details on programming options.
1	LED3_0		OD
12	LED0_1	LED1 - Ports 0 - 3. In default mode, active Low output indicates receiver active.	
9	LED1_1		However, LED1 is programmable and may also be set to indicate link status, duplex status, or operating speed. Refer to LED Configuration Register, Table 51 on page 62, 5
2	LED2_1		LED3_1

Table 11: LXT974A Power Supply Signal Descriptions

Pin\#	Symbol	Type	Signal Description
$22,60,96$	VCC	-	Power Supply. +5V supply for all digital circuits.
40,78	VCCMII	-	MII Supply. +3.3V or +5V supply for MII. A decoupling capacitor to digital ground should be supplied for these pins.
$7,14,39,56,59,77,95,160$	GND	-	Digital Ground. Ground return for digital supply.
21	GNDA	-	Analog Ground. Ground return for analog supply.
108	GNDH	-	Ground. Ground return for core analog circuitry.
107	VCCH	-	Supply. +5V supply for core analog circuitry.
$128,137,147,156$	VCCT	-	Transmit Power Supply. +5V supply for transmit circuits.
$127,136,146,155$	GNDT	-	Transmit Ground. Ground return for transmit supply.
$125,134,144,153$,	VCCR	-	Receive Power Supply. +5V supply for all receive circuits.
$121,122,131,141,150$	GNDR	-	Receive Ground. Ground return for receive supply.

Table 12: LXT975A Power Supply Signal Descriptions

Pin\#	Symbol	Type	Signal Description
$22,60,96$	VCC	-	Power Supply. +5V supply for all digital circuits.
40,78	VCCMII	-	MII Supply. +3.3V or +5V supply for MII. A decoupling capacitor to digital ground should be supplied for these pins.
$7,14,39,56,59,77,95,160$	GND	-	Digital Ground. Ground return for digital supply.
21	GNDA	-	Analog Ground. Ground return for analog supply.
108	GNDH	-	Ground. Ground return for core analog circuitry.
107	VCCH	-	Supply. +5V supply for core analog circuitry.
$128,135,147,154$	VCCT	-	Transmit Power Supply. +5V supply for transmit circuits.
$127,134,146,153$	GNDT	-	Transmit Ground. Ground return for transmit supply.
$125,132,144,151$,	VCCR	-	Receive Power Supply. +5V supply for all receive circuits.
$121,122,131,137,141,150,156$	GNDR	-	Receive Ground. Ground return for receive supply.

FUNCTIONAL DESCRIPTION

Introduction

The LXT974A and LXT975A are four-port Fast Ethernet 10/100 Transceivers that support 10 Mbps and 100 Mbps networks. They comply with all applicable requirements of IEEE 802.3. Each port can directly drive either a 100BASE-TX line (>130 meters) or a 10BASE-T line (>185 meters). Figure 3 shows the LXT974A in a typical switch application.

Figure 3: LXT974A Switch Application

On power-up, the LXT974A/975A uses auto-negotiation/ parallel detection on each port to automatically determine line operating conditions. If the PHY device on the other side of the link supports auto-negotiation, the LXT974A/ 975A will auto-negotiate with it using Fast Link Pulse (FLP) Bursts. If the PHY partner does not support autonegotiation, the LXT974A/975A will automatically detect the presence of either link pulses (10 Mbps PHY) or Idle symbols (100 Mbps PHY) and set its operating conditions accordingly.

The LXT974A/975A interfaces to four 10/100 Media Access Controllers (MAC)s through the MII interfaces. It performs all functions of the Physical Coding Sublayer (PCS) and Physical Media Attachment (PMA) sublayer as defined in the IEEE 802.3 100BASE-X specification. This device also performs all functions of the Physical Media Dependent (PMD) sublayer for 100BASE-TX connections. The MII speeds are automatically set once port operating conditions have been determined.

The LXT974A/975A provides half-duplex and full-duplex operation at 100 Mbps and 10 Mbps . It also offers standard Loopback Mode for switch applications. The LXT974A/ 975A supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an "X.Y" notation, where X is the register number $(0-6$ or $16-20)$ and Y is the bit number (0-15).

The LXT975A is pin compatible with the LXT974A except for the network ports. Each port on the LXT974A provides a combination twisted-pair or PECL interface for a 10/100BASE-TX or 100BASE-FX connection.

The LXT975A is optimized for stacked RJ45 modular applications as shown in Figure 4. Ports 1 and 3 support the PECL interface for fiber connections and all four ports support the twisted-pair interface for 10/100BASE-TX connections.

Figure 4: LXT975A Switch Application

Network Media / Protocol Support

The LXT974A/975A supports both 10BASE-T and 100BASE-TX Ethernet over twisted-pair, or 100 Mbps Ethernet over fiber media (100BASE-FX). A Media Independent Interface (MII) is used for communication with the Media Access Controller (MAC).

10/100 Mbps Network Interface

Each of the four network interface ports consists of four external pins (two differential signal pairs). The pins are shared between twisted-pair (TP) and fiber. Signal assignments (input or output, positive or negative) vary depending on whether the port is configured for TP or fiber media. Refer to Tables 1 through 6 for specific pin assignments.

The LXT974A/975A output drivers generate either 100BASE-TX, 10BASE-T, or 100BASE-FX output. When not transmitting data, the LXT974A/975A generates 802.3-compliant link pulses or idle code. Input signals are decoded either as a 100BASE-TX, 100BASE-FX, or 10BASE-T input, depending on the mode selected. Autonegotiation/parallel detection or manual control is used to determine the speed of this interface.

Twisted-Pair Interface

When operating at 100 Mbps , MLT3 symbols are continuously transmitted and received. When not transmitting data, the LXT974A/975A generates "IDLE" symbols.

During 10 Mbps operation, Manchester-encoded data is exchanged. When no data is being exchanged, the line is left in an idle state.

In 100 Mbps mode, the LXT974A/975A is capable of driving a 100BASE-TX connection over 100Ω, Category 5, Unshielded Twisted Pair (UTP). A 10BASE-T connection can be supported using 100Ω Category 3, UTP.

Only a transformer (1:1 on receive side, $2: 1$ on transmit side), load resistors, and bypass capacitors are needed to complete this interface. Using Level One's patented waveshaping technology, the transmitter predistorts the outgoing signal to reduce the need for external filters for EMI compliance.

A $4 \mathrm{k} \Omega$ passive load is always present across the twisted-pair inputs. When enabled, the twisted-pair inputs are actively biased to approximately 2.8 V .

Fiber Interface

The LXT974A/975A provides a PECL interface that complies with the ANSI X3.166 specification. This interface is suitable for driving a fiber-optic coupler.

The twisted-pair pin assignments are remapped to support the PECL interface. The LXT974A supports both the twisted-pair and fiber interface on all four ports. The LXT975A, optimized for TP operation with dual-high RJ45 connectors, provides dual interfaces on ports 1 and 3 .

During 100BASE-FX operation, the FIBI pins receive differential PECL signals and the FIBO pins produce differential PECL output signals.

Fiber ports cannot be enabled via auto-negotiation; they must be enabled via the Hardware Control Interface or MDIO registers.

MII Interface

The LXT974A/975A supports four standard MIIs (one per port). This interface consists of a data interface and a management interface. The MII Data Interface passes data between the LXT974A/975A and one or more Media Access Controllers (MACs). Separate signals are provided for transmit and receive. This interface operates at either 10 Mbps or 100 Mbps . The speed is set automatically, once the operating conditions of the network link have been determined.

Nine signals are used to pass received data to the MAC: RXD<3:0>, RX_CLK, RX_DV, RX_ER, COL and CRS. Seven signals are used to transmit data from the MAC: TXD<3:0>, TX_CLK, TX_EN, and TX_ER.

MII Data Interface

Figure 5 shows the data portion of the MII interface. Separate channels are provided for transmitting data from the MAC to the LXT974A/975A (TXD), and for receiving data (RXD) from the line.

Each channel has its own clock, data bus, and control signals. The LXT974A/975A supplies both clock signals as well as separate outputs for carrier sense and collision. Data transmission across the MII is implemented in 4-bit-wide nibbles.

Tristating the MII

The LXT974A/975A asserts RX_DV, RXD, RX_CLK and RX_ER as soon as it receives a packet from the network. When TRSTEn is High, the associated port output signals are tristated.

Figure 5: MII Data Interface

Transmit Clock

The LXT974A/975A is the master clock source for data transmission. The LXT974A/975A automatically sets the speed of TX_CLK to match port conditions. If the port is operating at 100 Mbps , TX_CLK will be set to 25 MHz . If the port is operating at 10 Mbps , TX_CLK will be set to 2.5 MHz . The transmit data and control signals must always be synchronized to TX_CLK by the MAC. The LXT974A/975A normally samples these signals on the rising edge of TX_CLK.

However, Advanced TX_CLK Mode is available by setting MII register bit $19.5=1$. In this mode, the LXT974A/975A samples the transmit data and control signals on the falling edge of TX_CLK. When operating under MDIO Control, the user can advance the transmit clock relative to TXD<3:0> and TX_ER. When Advance TX_CLK Mode is selected, the LXT974A/975A clocks TXD data in on the falling edge of TX_CLK, instead of the rising edge. This mode provides an increase in timing margins of TXD, relative to TX_CLK. Advance TX_CLK Mode is enabled when bit $19.5=1$.

Transmit Enable

The MAC must assert TX_EN the same time as the first nibble of preamble, and de-assert TX_EN after the last bit of the packet.

Receive Data Valid

The LXT974A/975A asserts RX_DV when it receives a valid packet. Timing changes depend on line operating speed:

- For 100TX and 100FX links, RX_DV is asserted from the first nibble of preamble to the last nibble of the data packet.
- For 10BT links, the entire preamble is truncated. RX_DV is asserted with the first nibble of the Start of Frame Delimiter (SFD) "5D" and remains asserted until the end of the packet.

Error Signals

Whenever the LXT974A/975A receives an errored symbol from the network, it asserts RX_ER and drives " 1110 " on the RXD pins.

When the MAC asserts TX_ER, the LXT974A/975A will drive "H" symbols out on the line.

Carrier Sense

Carrier sense (CRS) is an asynchronous output. It is always generated when a packet is received from the line and in some modes when a packet is transmitted.
On transmit, CRS is asserted on a 10 Mbps or 100 Mbps half-duplex link. Carrier sense is not generated on transmit when the link is operating in full-duplex mode.

Usage of CRS for Interframe Gap (IFG) timing is not recommended for the following reasons:

- De-assertion time for CRS is slightly longer than assertion time. This causes IFG intervals to appear somewhat shorter to the MAC than it actually is on the wire.
- CRS de-assertion is not aligned with TX_EN deassertion on transmit loopbacks in half-duplex mode.

Operational Loopback

Operational loopback is provided for 10 Mbps halfduplex links when bit $19.11=0$. Data transmitted by the MAC will be looped back on the receive side of the MII. Operational loopback is not provided for 100 Mbps links, full-duplex links, or when 19.11 $=1$.

Test Loopback

A test loopback function is provided for diagnostic testing of the LXT974A/LXT975A. During test loopback, twisted-pair and fiber interfaces are disabled. Data transmitted by the MAC is internally looped back by the LXT974A/975A and returned to the MAC.

Test loopback is available for 100TX, 100FX, and 10T operation.Test loopback is enabled by setting bit 0.14 $=1$, bit $0.8=1$ (full-duplex), and bit $0.12=0$ (disable auto-negotiation). The desired mode of operation for test loopback is set using bits 0.13 and 19.2 as shown in Table 13. Loopback paths for the three modes of operation are shown in Figure 6.

Table 13: Test Loopback Operation

Mode of Operation	Bit	
	$\mathbf{1 9 . 2}$	$\mathbf{0 . 1 3}$
10T Test Loopback	0	0
100TX Test Loopback	0	1
100FX Test Loopback	1	1
1. Bit $0.14=1$, bit 0.8 Test Loopback.	1 , and $0.12=0$ must also be set to enable	

Figure 6: Loopback Paths

Collision

The LXT974A/975A asserts its collision signal, asynchronously to any clock, whenever the line state is half-duplex and the transmitter and receiver are active at the same time. Table 14 summarizes the conditions for assertion of carrier sense, collision, and data loopback signals.

Table 14: Carrier Sense, Loopback, and Collision Conditions

\left.| Speed \& Duplex Condition | Carrier Sense | Loopback |
| :--- | :---: | :---: |$\right)$ Collision

MII Management Interface

The LXT974A/975A supports the IEEE 802.3 MII Management Interface also known as the Management Data Input/Output (MDIO) Interface. This interface allows upper-layer devices to monitor and control the state of the LXT974A/975A. The MDIO interface consists of a physical connection, a specific protocol that runs across the connection, and an internal set of addressable registers. Some registers are required and their functions are defined by the IEEE 802.3 specification. Additional registers are allowed for expanded functionality. The LXT974A/975A is configured with both sets of registers.

The physical interface consists of a data line (MDIO) and clock line (MDC). Operation of this interface is controlled by the MDDIS input pin. When MDDIS is High, the MDIO operates as a read-only interface. When MDDIS is Low, both read and write are enabled. The timing for the MDIO Interface is shown in Table 40 on page 53. The protocol is shown in Figures 7 and 8 (read and write). The protocol allows one controller to communicate with up to eight LXT974A/975A chips. Bits A4:2 of the 5-bit PHY address are assigned as the LXT974A/975A address. Bits A1:0 are assigned as port addresses 0 through 3. The LXT974A/975A supports 12 internal registers per port (48 total), each of which is 16 bits wide.

Figure 7: Management Interface - Read Frame Structure

Figure 8: Management Interface - Write Frame Structure

MII Interrupts

The LXT974A/975A provides interrupt signals in two ways. The MDIO interrupt reflects the interrupt status of each port addressed by the read. Details are shown in Figure 9.

Setting bit $17.1=1$ on all four ports, enables global interrupts using the MDINT pin. An active Low on this pin indicates a status change on the LXT974A/975A. Interrupts may be caused by:

- Link status change
- Auto-negotiation complete
- Full-duplex status change
- Jabber detect

Figure 9: MDIO Interrupt Signaling

Hardware Control Interface

The Hardware Control Interface is used to configure operating characteristics of the LXT974A/975A. When MDDIS is Low, this interface provides initial values for the MDIO registers, and then passes control to the MDIO Interface. When MDDIS is High, this interface provides continuous control over the LXT974A/975A.

Individual chip addressing allows multiple LXT974A/975A devices to share the MII in either mode. Tables 15 through 17 show how to set up the desired operating configurations using the Hardware Control Interface.

Table 15: Configuring the LXT974A/975A via Hardware Control

Desired Configuration	Pin Name	Input Value	MDIO Registers
Auto-Negotiation Enabled on all ports ${ }^{1,2,3}$	AUTOENA	High	$0.12=1$
	SD/TP n	Low	$19.2=0$
Auto-Negotiation Disabled on all ports ${ }^{4}$	AUTOENA	Low	$0.12=0$
Scrambler Bypassed on all ports	BYPSCR	High	$19.3=1$
Scrambler Enabled on all ports	BYPSCR	Low	$19.3=0$
1. SD/TP n must be set Low for Auto-Negotiation operation. 2. Refer to Table 16 for Hardware Control Interface functions advertised when auto-negotiation is enabled. 3. Fiber operation can be forced per port via SD/TP n pins when auto-negotiation is enabled. See Table 17 for details. 4. Refer to Table 17 for Hardware Control Interface functions available when auto-negotiation is disabled.			

Table 16: Configuring LXT974A/975A Auto-Negotiation Advertisements Via Hardware Control

Desired Configuration ${ }^{1,2}$	Pin Settings					MDIO Registers			
	SD/TPn (per port)	FDE (global)	CFG_2 (global)	CFG_1 (global)	$\text { CFG_0 } 0^{3}$ (global)	4.5	4.6	4.7	4.8
Advertise All	Low	Ignore	Low	Low	Ignore	1	1	1	1
Advertise 100 HD	Low	Low	High	Low	Ignore	0	0	1	0
Advertise $100 \mathrm{HD} / \mathrm{FD}$	Low	High	High	Low	Ignore	0	0	1	1
Advertise 10 HD	Low	Low	Low	High	Ignore	1	0	0	0
Advertise $10 \mathrm{HD} / \mathrm{FD}$	Low	High	Low	High	Ignore	1	1	0	0
Advertise 10/100 HD	Low	Low	High	High	Ignore	1	0	1	0

[^0]2. Refer to Table 17 for Hardware Control Interface functions available when auto-negotiation is disabled.
3. Auto-Negotiation is not affected by CFG_0.

Table 17: Configuring the LXT974A/975A with Auto-Negotiation Disabled

Desired Configuration ${ }^{1,2}$	Pin Settings					MDIO Registers		
	SD/TPn per port	CFG_2 global	CFG_0 global	FDE global	FDE_FX	0.8	0.13	19.2
Per Port (Fiber) Configuration Fiber operation can be forced per port via $\mathrm{SD} / \overline{\mathrm{TP}} n$ pins when auto-negotiation is enabled. Per-port settings override the global pin settings.								
100FX Full-Duplex Operation.	High or PECL ${ }^{3}$	Ignored	Ignored	Ignored	High	1	1	1
100FX Half-Duplex Operation.	High or PECL ${ }^{3}$	Ignored	Ignored	Ignored	Low	0	1	1
Global (Twisted-Pair) Configuration ${ }^{5}$								
Force 100TX Full-Duplex Operation on all ports. ${ }^{4}$	Low	Low	High	High	Ignored	1	1	0
Force 100TX Half-Duplex Operation on all ports. ${ }^{4}$	Low	Low	High	Low	Ignored	0	1	0
Force 10T Full-Duplex Operation on all ports.	Low	Low	Low	High	Ignored	1	0	0
Force 10T Half-Duplex Operation on all ports.	Low	Low	Low	Low	Ignored	0	0	0
1. Refer to Table 15 for basic configurations. 2. Refer to Table 16 for Hardware Control Interface functions advertised when auto-negotiation is enabled. 3. When SD/TP n is set High or to PECL levels, auto-negotiation is disabled and FDE_FX determines the duplex mode of the port. 4. CFG_2, CFG_0, and SD/TP n must all be set for 100TX operation. 5. Fiber configuration must be selected on a per-port basis.								

Initialization

At power-up or reset, the LXT974A/975A performs the initialization as shown in Figure 10. Control mode selection is provided via the MDDIS pin as shown in Table 18. When MDDIS (pin 100) is High, the LXT974A/975A operates in Manual Control Mode. When MDDIS is Low, the LXT974A/975A operates in MDIO Control Mode.

MDIO Control Mode

In the MDIO Control Mode, the LXT974A/975A uses the Hardware Control Interface to set up initial (default) values of the MDIO registers. The MDIO Register set for the LXT974A/975A is described in Tables 44 through 55. Specific bits in the registers are referenced using an "X.Y" notation, where X is the register number ($0-6$ or $16-20$) and Y is the bit number (0-15). Once initial values are set, bit control reverts to the MDIO interface.

Manual Control Mode

In the Manual Control Mode, LXT974A/975A disables direct write operations to the MDIO registers via the MDIO interface. The Hardware Control Interface is continuously monitored and the MDIO registers are updated accordingly.

Link Configuration

When the LXT974A/975A is first powered on, reset, or encounters a link failure state, it must determine the line speed and operating conditions to use for the network link.

The LXT974A/975A first checks the Hardware Control Interface pins and MDIO registers. Using these mechanisms, the user can command the LXT974A/975A to do one of the following:

- Force network link to 100FX (Fiber).
- Force network link operation to:

> 100TX, Full-Duplex
> 100TX, Half-Duplex
> 10BASE-T, Full-Duplex
> 10BASE-T, Half-Duplex

- Allow auto-negotiation/parallel-detection. The Hardware Control Interface pins are used to set the state of the MDIO advertisement registers.
When forcing the network link, the LXT974A/975A immediately begins operating the network interface as commanded. When auto-negotiation is enabled, the autonegotiation / parallel-detection operation begins.

Table 18: Mode Control Settings

Mode	MDDIS Pin 100	RESET Pin 109	PWR DWN Pin 102
MDIO Control	Low	High	Low
Manual Control	High	High	Low
Reset	-	Low	Low
Power Down	-	-	High

Figure 10: Hardware Interface Mode Selection

Auto-Negotiation

The LXT974A/975A attempts to auto-negotiate with its counterpart across the link by sending Fast Link Pulse (FLP) bursts. Each burst consists of 33 link pulses spaced 62.5μ s apart. Odd link pulses (clock pulses) are always present. Even link pulses (data pulses) may be present or absent to indicate a " 1 " or a " 0 ". Each FLP burst exchanges 16 bits of data, which are referred to as a "page". All devices that support auto-negotiation must support a "Base Page" as defined in the IEEE 802.3 standard.

By exchanging Base Pages, the LXT974A/975A and its link partner communicate their capabilities to each other. Both sides must receive at least three identical base pages for negotiation to proceed. Each side finds the highest common capabilities that both sides support. Both sides then exchange more pages, and finally agree on the operating state of the line.

Parallel Detection

In parallel with auto-negotiation, the LXT974A/975A also monitors for 10 Mbps Normal Link Pulses (NLP) or 100 Mbps Idle symbols. If either is detected, the device automatically reverts to the corresponding operating mode. Parallel detection allows the LXT974A/975A to
communicate with devices that do not support autonegotiation.

Controlling Auto-Negotiation

When auto-negotiation is controlled by software, the following steps are recommended:

- After power-up, power-down, or reset, the powerdown recovery time, as specified in Table 41 on page 54 , must be exhausted before proceeding.
- Set the auto-negotiation advertisement register bits.
- Enable auto-negotiation by setting MDIO bit $0.12=1$.

Monitoring Auto-Negotiation

When auto-negotiation is being monitored, the following apply:

- Bit 20.13 is set to 1 once the link is established.
- Bits 20.12 and 20.11 can be used to determine the link operating conditions (speed and duplex).

Figure 11: LXT974A/975A Auto-Negotiation Operation

100 Mbps Operation

100BASE-X MII Operations

The LXT974A/975A encodes and scrambles the data sent by the MAC, and then transmits it using MLT3 signaling. The LXT974A/975A descrambles and decodes MLT3 data received from the network.

When the MAC is not actively transmitting data, the LXT974A/975A sends out Idle symbols.

The 100BASE-X protocol specifies the use of a 5-bit symbol code on the network media. However, data is normally transmitted across the MII interface in 4-bit nibbles. The LXT974A/975A incorporates a 4B/5B encoder/decoder circuit that translates 4-bit nibbles from the MII into 5-bit symbols for the 100BASE-X connection, and translates 5-bit symbols from the 100BASE-X connection into 4-bit nibbles for the MII. Figure 12 shows the data conversion flow from nibbles to symbols. Table 19 on page 24 shows 4B/5B symbol coding (not all symbols are valid).

100BASE-X Network Operations

During 100BASE-X operation, the LXT974A/975A transmits and receives 5-bit symbols across the network link. Figure 13 shows the structure of a standard frame packet. When the MAC is not actively transmitting data, the LXT974A/975A sends out Idle symbols on the line.
In 100TX mode, the LXT974A/975A scrambles the data and transmits it to the network using MLT-3 line code. The MLT-3 signals received from the network are descrambled and decoded and sent across the MII to the MAC.

In 100 FX mode, the LXT974A/975A transmits and receives NRZI signals across the PECL interface. An external 100FX transceiver module is required to complete the fiber connection.

As shown in Figure 13, the MAC starts each transmission with a preamble pattern. As soon as the LXT974A/975A detects the start of preamble, it transmits a J/K symbol (Start of Stream Delimiter, SSD) to the network. It then encodes and transmits the rest of the packet, including the balance of the preamble, the Start of Frame Delimiter (SFD), packet data, and CRC. Once the packet ends, the LXT974A/975A transmits the T/R symbol End of Stream Delimiter (ESD) and then returns to transmitting Idle symbols.

Figure 12: 100BASE-TX Data Flow
Standard MII Mode Data Flow

1. Four independent MII ports serve four independent Network ports. Network port configurations are independently selectable. MII port speed is set to match the associated Network port.
2. The Scrambler can be bypassed by setting $19.3=1$.

Figure 13: 100BASE-TX Frame Structure

Table 19: 4B/5B Coding

Code Type	4B Code 3210	Name	5B Code 43210	Interpretation
DATA	0000	0	11110	Data 0
	0001	1	01001	Data 1
	0010	2	10100	Data 2
	0011	3	10101	Data 3
	0100	4	01010	Data 4
	0101	5	01011	Data 5
	0110	6	01110	Data 6
	0111	7	01111	Data 7
	1000	8	10010	Data 8
	1001	9	10011	Data 9
	1010	A	10110	Data A
	1011	B	10111	Data B
	1100	C	11010	Data C
	1101	D	11011	Data D
	1110	E	11100	Data E
	1111	F	11101	Data F
IDLE	undefined	I^{1}	11111	Idle. Used as inter-stream fill code
CONTROL	0101	J^{2}	11000	Start of Stream Delimiter (SSD), part 1 of 2
	0101	K^{2}	10001	Start of Stream Delimiter (SSD), part 2 of 2
	undefined	T^{3}	01101	End of Stream Delimiter (ESD), part 1 of 2
	undefined	R^{3}	00111	End of Stream Delimiter (ESD), part 2 of 2
INVALID	undefined	H^{4}	00100	Transmit Error. Used to force signaling errors
	undefined	Invalid	00000	Invalid
	undefined	Invalid	00001	Invalid
	undefined	Invalid	00010	Invalid
	undefined	Invalid	00011	Invalid
	undefined	Invalid	00101	Invalid
	undefined	Invalid	00110	Invalid
	undefined	Invalid	01000	Invalid
	undefined	Invalid	01100	Invalid
	undefined	Invalid	10000	Invalid
	undefined	Invalid	11001	Invalid
1. The /I/ (Idle) code group is sent continuously between frames. 2. The $/ \mathrm{J} /$ and $/ \mathrm{K} /(\mathrm{SSD})$ code groups are always sent in pairs; $/ \mathrm{K} /$ follows $/ \mathrm{J} /$. 3. The $/ T /$ and $/ \mathrm{R} /$ (ESD) code groups are always sent in pairs; $/ \mathrm{R} /$ follows $/ \mathrm{T} /$. 4. An/H/ (Error) code group is used to signal an error condition.				

100BASE-X Protocol Sublayer Operations

With respect to the 7-layer communications model, the LXT974A/975A is a Physical Layer 1 (PHY) device. The LXT974A/975A implements the Physical Coding Sublayer (PCS), Physical Medium Attachment (PMA), and Physical Medium Dependent (PMD) sublayers of the reference model defined by the IEEE 802.3u specification. The following paragraphs discuss LXT974A/975A operation from the reference model point of view.

PCS Sublayer

The Physical Coding Sublayer (PCS) provides the MII interface, as well as the 4B/5B encoding/decoding function.

For 100TX and 100FX operation, the PCS layer provides IDLE symbols to the PMD-layer line driver as long as TX_EN is de-asserted.

For 10T operation, the PCS layer merely provides a bus interface and serialization/de-serialization function. 10T operation does not use the 4B/5B encoder.

Preamble Handling

When the MAC asserts TX_EN, the PCS substitutes a /J/K symbol pair, also known as the Start of Stream Delimiter (SSD), for the first two nibbles received across the MII. The PCS layer continues to encode the remaining MII data, following Table 19 on page 24, until TX_EN is de-asserted. It then returns to supplying IDLE symbols to the line driver.

In the receive direction, the PCS layer performs the opposite function, substituting two preamble nibbles for the SSD.

Figure 14: LXT974A/975A Protocol Sublayers

Data Errors

Figure 15 shows normal reception. When the LXT974A/975A receives invalid symbols from the line, it asserts RX_ER, as shown in Figure 16.

Collision Indication

Figure 17 shows normal transmission. The LXT974A/ 975A detects a collision if transmit and receive are active at the same time. As shown in Figure 18, upon detection of a collision, the COL output is asserted and remains asserted for the duration of the collision.

Figure 15: 100BASE-TX Reception with No Errors

Figure 16: 100BASE-TX Reception with Invalid Symbol

Figure 17: 100BASE-TX Transmission with No Errors

Figure 18: 100BASE-TX Transmission with Collision

PMA Sublayer

Link

The LXT974A/975A supports a Standard link algorithm or Enhanced link algorithm, which can be set via bit 16.1. Link is established when the symbol error rate is less than 64 errors out of 1024 symbols received. Once the link is established:

When standard link algorithm is selected (default, bit $16.1=0$), the link will go down when the symbol error rate becomes greater than 64 out of 1024 .

When enhanced link algorithm is selected (bit $16.1=1$), the link will go down if twelve idle symbols in a row are not received within 1 to 2 ms . This mode makes it more difficult to bring the link down.

In either mode, the LXT974A/975A reports link failure via the MII status bits ($1.2,18.15$, and 20.13) and interrupt functions. If auto-negotiate is enabled, link failure causes the LXT974A/975A to re-negotiate.

Link Failure Override

The LXT974A/975A will normally transmit 100 Mbps data packets or Idle symbols only if it detects the link is up, and transmits only FLP bursts if the link is not up. Setting bit $19.14=1$ overrides this function, allowing the LXT974A/975A to transmit data packets even when the link is down. This feature is provided as a diagnostic tool. Note that auto-negotiation must be disabled to transmit data packets in the absence of link. If auto-negotiation is enabled, the LXT974A/975A will automatically begin transmitting FLP bursts if the link goes down.

Carrier Sense (CRS)

For 100TX and 100FX links, a start of stream delimiter or $/ \mathrm{J} / \mathrm{K}$ symbol pair causes assertion of carrier sense (CRS). An end of stream delimiter, or /T/R symbol pair causes de-assertion of CRS. The PMA layer will also de-assert CRS if IDLE symbols are received without /T/R; however, in this case RX_ER will be asserted for one clock cycle when CRS is de-asserted.
For 10T links, CRS assertion is based on reception of valid preamble, and de-assertion on reception of an end of frame (EOF) marker.

Twisted-Pair PMD Sublayer

The twisted-pair Physical Medium Dependent (PMD) layer provides the signal scrambling and descrambling, line coding and decoding (MLT-3 for 100TX, Manchester for 10 T), as well as receiving, polarity correction, and baseline wander correction functions.

Scrambler/Descrambler (100TX Only)

The purpose of the scrambler is to spread the signal power spectrum and further reduce EMI using an 11-bit, non-data-dependent polynomial. The receiver automatically decodes the polynomial whenever IDLE symbols are received.
The scrambler/descrambler can be bypassed by either setting bit 19.3 $=1$ or setting pin (BYPSCR) High. The scrambler is automatically bypassed when the fiber port is enabled. Scramber bypass is provided for diagnostic and test support.

Baseline Wander Correction

The LXT974A/975A provides a baseline wander correction function which makes the device robust under all network operating conditions. The MLT3 coding scheme used in 100BASE-TX is by definition "unbalanced". This means that the DC average value of the signal voltage can "wander" significantly over short time intervals (tenths of seconds). This wander can cause receiver errors, particularly in less robust designs, at long line lengths (100 meters). The exact characteristics of the wander are completely data dependent.
The LXT974A/975A baseline wander correction characteristics allow the LXT974A/975A to recover errorfree data while receiving worst-case "killer" packets over a variety of cable distances.

Polarity Correction

The LXT974A/975A automatically detects and corrects for the condition where the receive signal (TPIP/ N) is inverted. Reversed polarity is detected if eight inverted link pulses, or four inverted end of frame (EOF) markers, are received consecutively. If link pulses or data are not received by the maximum receive time-out period, the polarity state is reset to a non-inverted state.

Fiber PMD Sublayer

The LXT974A/975A provides a PECL interface for connection to an external fiber-optic transceiver. (The external transceiver provides the PMD function for fiber media.) The LXT974A/975A uses an NRZI format for the fiber interface. The fiber interface operates at 100 Mbps and does not support 10 FL applications.

10 Mbps Operation

The LXT974A/975A will operate as a standard 10BASE-T transceiver. Data transmitted by the MAC as 4-bit nibbles is serialized, Manchester-encoded, and transmitted on the TPOP/N outputs. Received data is decoded and de-serialized into 4-bit nibbles. The LXT974A/975A supports all the standard 10 Mbps functions.

10BASE-T MII Operation

The MAC transmits data to the LXT974A/975A via the MII interface. The LXT974A/975A converts the digital data from the MAC into an analog waveform that is transmitted to the network via the copper interface. The LXT974A/975A converts analog signals received from the network into a digital format suitable for the MAC. The LXT974A/975A sends the received data to the MAC via the MII.

10BASE-T Network Operations

During 10BASE-T operation, the LXT974A/975A transmits and receives Manchester-encoded data across the network link. When the MAC is not actively transmitting data, the LXT974A/975A sends out link pulses on the line.

In 10BASE-T mode, the polynomial scrambler/ descrambler is inactive. Manchester-encoded signals received from the network are decoded by the LXT974A/ 975A and sent across the MII to the MAC.

The LXT974A/975A does not support fiber connections at 10 Mbps .

Preamble Handling

In 10BASE-T Mode, the LXT974A/975A strips the entire preamble off of received packets. CRS is asserted a few bit times after carrier is detected. RX_DV is held Low for the duration of the preamble.

When RX_DV is asserted, the very first two nibbles driven by the LXT974A/975A are the SFD "5D" hex followed by the body of the packet. In 10T loopback, the LXT974A/975A loops back whatever the MAC transmits to it, including the preamble.

Link Test

In 10 Mbps mode, the LXT974A/975A always transmit link pulses. If the link test function is enabled, it monitors the connection for link pulses. Once link pulses are detected, data transmission will be enabled and will remain enabled as long as either the link pulses or data transmission continue. If the link pulses stop, the data transmission will be disabled.

If the link test function is disabled, the LXT974A/ 975A will transmit to the connection regardless of detected link pulses. The link test function can be disabled by setting bit $19.8=1$ or by setting AUTOENA to disable auto-negotiation and setting CFG_1 input High.

Link Failure

Link failure occurs if Link Test is enabled and link pulses or packets stop being received. If this condition occurs, the LXT974A/975A returns to the autonegotiation phase if auto-negotiation is enabled.

SQE (Heartbeat)

By default, the SQE (heartbeat) function is disabled on the LXT974A/975A. To enable this function, set bit $19.10=1$. When this function is enabled, the LXT974A/975A will assert its COL output after each transmit packet. See Figure 31 on page 51 for SQE timing parameters.

Jabber

If MAC transmission exceeds the jabber timer, the LXT974A/975A will disable the transmit and loopback functions and enable the COL pin. See Figure 32 on page 51 for jabber timing parameters.

The LXT974A/975A automatically exits jabber mode after the unjab time has expired. This function can be disabled by setting bit $19.9=1$.

LED Functions

The LXT974A/975A provides three programmable LEDs per port. Refer to Table 51 on page 62 for LED programming details. The LXT974A/975A also provides a serial LED output.

Serial LED Output

The LXT974A/975A provides a serial LED interface which should be attached to an external shift register. This interface provides 24 status bits (6×4 ports). Each port reports the following conditions:

- Transmit (T)	
$0=$ Transmit active	$1=$ Transmit inactive
- Receive (R)	
$0=$ Receive active	$1=$ Receive inactive
- Link (L)	
$0=$ Link active	$1=$ Link inactive
- Duplex (D)	
$0=$ Half-Duplex	$1=$ Full-Duplex
- Speed (S)	
$0=100$ Mbps - Collision (C) $0=$ Collision active	$1=10$ Mbps Collision inactive

LED Data is output on LEDDAT in sets of 24 bits. The serial burst is repeated every 1 ms . A status change in any bit also triggers an immediate serial burst (following the minimum inter-burst gap of $10 \mu \mathrm{~s}$). LEDENA is driven High for the duration of the LEDDAT output.

Per Port LEDs

The LXT974A/975A provides three LED outputs for each port (LEDn_0, LEDn_1 and LED $n _2$, where $n=$ port number). These outputs can directly drive LEDs to indicate activity and collision status. The active Low "on" times are normally extended for improved LED visibility. The ontime extension can be disabled by setting bit $16.0=1$.

LEDn_0

In default mode, LED_0 indicates transmitter active. However, LED $n _0$ is programmable and may also be set to indicate receiver active, link, or full-duplex status. Refer to LED Configuration Register, Table 51 on page 62, for details on programming options.

LEDn_1

In default mode, LED_1 indicates receiver active. However, LEDn_1 is programmable and may also be set to indicate link status, full-duplex status or operating speed. Refer to LED Configuration Register, Table 51 on page 62, for details on programming options.

LEDn_2

In default mode, active Low output indicates link up. However, LED $n _2$ is programmable and may also be set to indicate full-duplex status, operating speed or collision. Refer to LED Configuration Register, Table 51 on page 62 , for details on programming options.

Table 20: LED-DAT Serial Port Bit Assignments

| Port 0 | | | | | Port 1 | | | | | | Port 3 | | | | | | | |
| :---: |
| 23^{1} | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | $11: 6$ | 5 | 4 | 3 | 2 | 1 | 0 |
| T | R | L | D | S | C | T | R | L | D | S | C | TRLDSC | T | R | L | D | S | C |

[^1]
Operating Requirements

Power Requirements

The LXT974A/975A requires four +5 V supply inputs (VCC, VCCR, VCCT, and VCCH). These inputs may be supplied from a single source although decoupling is required to each respective ground. As a matter of good practice, these supplies should be as clean as possible. Typical filtering and decoupling are shown in Figure 21 on page 37.

MII Power Requirements

An additional supply may be used for the MII (VCCMII). The supply may be either +5 V or +3.3 V . When the MII supply is 3.3 V , MII inputs may not be driven with 5 V levels. VCCMII should be supplied from the same power source used to supply the controller on the other side of the MII interface. Refer to Table 25 on page 42 for MII I/O characteristics.

Low-Voltage Fault Detect

The LXT974A/975A has a low-voltage fault detection function that prevents transmission of invalid symbols when VCC goes below normal operating levels. This function disables the transmit outputs when a lowvoltage fault on VCC occurs. If this condition happens, bit 20.2 is set High. Operation is automatically restored when VCC returns to normal. Table 27 on page 43 indicates voltage levels used to detect and clear the low-voltage fault condition.

Power Down Mode

The LXT974A/975A goes into Power Down Mode when PWRDWN is asserted. In this mode, all functions are disabled except the MDIO. The power supply current is significantly reduced. This mode can be used for energy-efficient applications or for redundant applications where there are two devices and one is left as a standby. When the LXT974A/975A is returned to normal operation, configuration settings of the MDIO registers are maintained. Refer to Table 23 on page 41 for power down specifications.

Clock Requirements

The LXT974A/975A requires a constant 25 MHz clock (CLK25M) that must be enabled at all times. Refer to Test Specifications, Table 26 on page 42, for clock timing requirements.

APPLICATION INFORMATION

Design Recommendations

The LXT974A/975A is designed to comply with IEEE requirements and to provide outstanding receive Bit Error Rate (BER) and long-line-length performance. Lab testing has shown that the LXT974A/975A can perform well beyond the required distance of 100 meters. To achieve maximum performance from the LXT974A/975A, attention to detail and good design practices are required. Refer to the LXT974A/975A Design and Layout Guide for detailed design and layout information.

General Design Guidelines

Adherence to generally accepted design practices is essential to minimize noise levels on power and ground planes. Up to 50 mV of noise is considered acceptable. 50 to 80 mV of noise is considered marginal. High-frequency switching noise can be reduced, and its effects can be eliminated, by following these simple guidelines throughout the design:

- Fill in unused areas of the signal planes with solid copper and attach them with vias to a VCC or ground plane that is not located adjacent to the signal layer.
- Use ample bulk and decoupling capacitors throughout the design (a value of $.01 \mu \mathrm{~F}$ is recommended for decoupling caps).
- Provide ample power and ground planes.
- Provide termination on all high-speed switching signals and clock lines.
- Provide impedance matching on long traces to prevent reflections.
- Route high-speed signals next to a continuous, unbroken ground plane.
- Filter and shield DC-DC converters, oscillators, etc.
- Do not route any digital signals between the LXT974A/975A and the RJ45 connectors at the edge of the board.
- Do not extend any circuit power and ground plane past the center of the magnetics or to the edge of the board. Use this area for chassis ground, or leave it void.

Power Supply Filtering

Power supply ripple and digital switching noise on the VCC plane can cause EMI problems and degrade line performance. It is generally difficult to predict in advance the performance of any design, although certain factors greatly increase the risk of having these problems:

- Poorly-regulated or over-burdened power supplies.
- Wide data busses (>32-bits) running at a high clock rate.
- DC-to-DC converters.

Many of these issues can be improved just by following good general design guidelines. In addition, Level One also recommends filtering between the power supply and the analog VCC pins of the LXT974A/975A. Filtering has two benefits. First, it keeps digital switching noise out of the analog circuitry inside the LXT974A/975A, which helps line performance. Second, if the VCC planes are laid out correctly, it keeps digital switching noise away from external connectors, reducing EMI problems.

The recommended implementation is to divide the VCC plane into two sections. The digital section supplies power to the digital VCC pin, MII VCC pin, and to the external components. The analog section supplies power to VCCH , VCCT, and VCCR pins of the LXT974A/975A. The break between the two planes should run under the device. In designs with more than one LXT974A/975A, a single continuous analog VCC plane can be used to supply them all.

The digital and analog VCC planes should be joined at one or more points by ferrite beads. The beads should produce at least a 100Ω impedance at 100 MHz . The beads should be placed so that current flow is evenly distributed. The maximum current rating of the beads should be at least 150% of the current that is actually expected to flow through them. Each LXT974A/975A draws a maximum of 500 mA from the analog supply so beads rated at 750 mA should be used. A bulk cap (2.2-10 $\mu \mathrm{F}$) should be placed on each side of each ferrite bead to stop switching noise from traveling through the ferrite.

In addition, a high-frequency bypass cap $(.01 \mu \mathrm{f})$ should be placed near each analog VCC pin.

Ground Noise

The best approach to minimize ground noise is strict use of good general design guidelines and by filtering the VCC plane.

Power and Ground Plane Layout Considerations

Great care needs to be taken when laying out the power and ground planes. The following guidelines are recommended:

- Follow the guidelines in the LXT974A/975A Layout Guide for locating the split between the digital and analog VCC planes.
- Keep the digital VCC plane away from the TPOP/N and TPIP/N signals, away from the magnetics, and away from the RJ45 connectors.
- Place the layers so that the TPOP/N and TPIP/N signals can be routed near or next to the ground plane. For EMI reasons, it is more important to shield TPOP/ N and TPIP/N.

Chassis Ground

For ESD reasons, it is a good design practice to create a separate chassis ground that encircles the board and is isolated via moats and keep-out areas from all circuit-ground planes and active signals. Chassis ground should extend from the RJ45 connectors to the magnetics, and can be used to terminate unused signal pairs ('Bob Smith’ termination). In single-point grounding applications, provide a single connection between chassis and circuit grounds with a 2 kV isolation capacitor. In multi-point grounding schemes (chassis and circuit grounds joined at multiple points), provide 2 kV isolation to the Bob Smith termination.

MII Terminations

Series termination resistors are not required on the MII signals driven by the LXT974A/975A.

The RBIAS Pin

The LXT974A/975A requires a $22 \mathrm{k} \Omega, 1 \%$ resistor directly connected between the RBIAS pin and ground. Place the RBIAS resistor as close to the RBIAS pin as possible. Run an etch directly from the pin to the resistor, and sink the other side of the resistor to a filtered ground. Surround the RBIAS trace with a filtered ground; do not run high-speed signals next to RBIAS.

The Twisted-Pair Interface

Because the LXT974A/975A transmitter uses 2:1 magnetics, system designers must take extra precautions to minimize parasitic shunt capacitance in order to meet return loss specifications. These steps include:

- Use compensating inductor in the output stage (see Figure 22 on page 38).
- Place the magnetics as close as possible to the LXT974A/975A.
- Keep transmit pair traces short.
- Route the transmit pair adjacent to a ground plane. The optimum arrangement is to place the transmit traces two to three layers from the ground plane, with no intervening signals.
- Some magnetic vendors are producing magnetics with improved return loss performance. Use of these improved magnetics increases the return loss budget available to the system designer.
- Improve EMI performance by filtering the output centertap. A single ferrite bead may be used to supply centertap current to all 4 ports. All four ports draw a combined total of $\geq 270 \mathrm{~mA}$ so the bead should be rated at $\geq 400 \mathrm{~mA}$.

In addition, follow all the standard guidelines for a twistedpair interface:

- Route the signal pairs differentially, close together. Allow nothing to come between them.
- Keep distances as short as possible; both traces should have the same length.
- Avoid vias and layer changes as much as possible.
- Keep the transmit and receive pairs apart to avoid cross-talk.
- Put all the components for the transmit network on the front side of the board (same side as the LXT974A/ 975A).
- Put entire receive termination network on the back side of the board.
- Bypass common-mode noise to ground on the inboard side of the magnetics using $0.01 \mu \mathrm{~F}$ capacitors.
- Keep termination circuits close together and on the same side of the board.
- Always put termination circuits close to the source end of any circuit.

The Fiber Interface

The fiber interface consists of a PECL transmit and receive pair to an external fiber-optic transceiver. The transmit pair should be AC-coupled to the transceiver, and biased to 3.7 V with a 50Ω equivalent impedance. The receive pair can be DC-coupled, and should be biased to 3.0 V with a 50Ω equivalent impedance. Figure 23 on page 39 shows the correct bias networks to achieve these requirements.

Magnetics Information

The LXT974A/975A requires a $1: 1$ ratio for the receive transformers and a $2: 1$ ratio for the transmit transformers as shown in Table 21. The transformer isolation voltage should be rated at 2 kV to protect the circuitry from static voltages across the connectors and cables.

Refer to the Magnetic Manufacturers Cross Reference Guide (Application Note 73) for a list of suitable magnetic manufacturers and part numbers. The latest version is located on the Level One web site (www.level1.com). Suitable Magnetic part numbers are provided as a reference only. Before committing to a specific component, designers should contact the manufacturer for current product specifications, and validate the magnetics for a specific application.

Magnetics With Improved Return Loss Performance

Level One is working with magnetic vendors to develop magnetic modules with improved return loss characteristics. These improved magnetics simplify the design requirements for meeting ANSI X3.263 return loss specifications.

Table 21: Magnetics Requirements

Parameter	Min	Nom	Max	Units	Test Condition
Rx turns ratio	-	$1: 1$	-	-	
Tx turns ratio	-	$2: 1$	-	-	
Insertion loss	0.0	-	1.1	dB	80 MHz
Primary inductance	350	-	-	$\mu \mathrm{H}$	
Transformer isolation	-	2	-	kV	
Differential to common mode rejection	40	-	-	dB	.1 to 60 MHz
	35	-	-	dB	60 to 100 MHz
Return Loss - Standard	-	-	-16	dB	30 MHz
Return Loss - Improved - - -10 nyyyyy dB	-	-	-20	dB	30 MHz

Twisted-Pair/ RJ45 Interface

Figure 19 shows layout of the LXT974A twisted-pair interface in a single-high RJ45 modular application. Figure 20 shows layout of the LXT975A twisted-pair interface in a dual-high (stacked) RJ45 application.

Figure 19: Typical LXT974A Twisted-Pair Single RJ45 Modular Application

Figure 20: Typical LXT975A Twisted-Pair Stacked RJ45 Modular Application

Figure 21: LXT974A/975A Power and Ground Connections

Figure 22: Typical Twisted-Pair Interface and Supply Filtering

1. Receiver common mode bypass cap may improve BER performance in systems with noisy power supplies.
2. A single ferrite bead (rated at 400 mA) may be used to supply center tap current to all 4 ports.

Figure 23: Typical Fiber Interface

1. Refer to fiber transceiver manufacturers recommendations for termination circuitry. Suitable fiber transceivers include the HFBR-5103 and HFBR-5105.

Figure 24: Typical MII Interface

TEST SPECIFICATIONS

NOTE

Tables 22 through 42 and Figures 25 through 38 represent the target specifications of the LXT974A/975A.

Table 22: Absolute Maximum Ratings

Parameter	Sym	Min	Max	Units	
Supply voltage	VCC	-0.3	6	V	
Operating temperature	Ambient	TOPA	-15	+85	${ }^{\circ} \mathrm{C}$
	Case	TOPC	-	+120	${ }^{\circ} \mathrm{C}$
Storage temperature	TST	-65	+150	${ }^{\circ} \mathrm{C}$	

Exceeding these values may cause permanent damage.
Functional operation under these conditions is not implied.
Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 23: Operating Conditions

Parameter		Sym	Min	Typ ${ }^{1}$	Max	Units
Recommended supply voltage ${ }^{2}$	Except MII Supply	Vcc	4.75	5.0	5.25	V
	MII Supply	VccMII	3.125	-	5.25	V
Recommended operating temperature	Ambient	TOPA	0	-	70	${ }^{\circ} \mathrm{C}$
	Case	TOPC	0	-	110	${ }^{\circ} \mathrm{C}$
Vcc current	100BASE-TX	ICC	-	-	570	mA
	100BASE-FX	ICC	-	-	500	mA
	10BASE-T	ICC	-	-	570	mA
	Power Down Mode	ICC	-	0.5	3.0	mA
	Auto-Negotiation	ICC	-	-	570	mA

. Typical values are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
2. Voltages with respect to ground unless otherwise specified.

Table 24: Digital I/O Characteristics ${ }^{1}$ (Over Recommended Range)

Parameter	Symbol	Min	Typ ${ }^{2}$	Max	Units	Test Conditions
Input Low voltage ${ }^{3}$	VIL	-	-	0.8	V	-
Input High voltage ${ }^{3}$	VIH	2.0	-	-	V	-
Input current	II	-100	-	100	$\mu \mathrm{A}$	$0.0<\mathrm{VI}^{2} \times \mathrm{VCC}$
Output Low voltage	VoL	-	-	0.4	V	$\mathrm{IOL}=4 \mathrm{~mA}$
Output High voltage	VOH	2.4	-	-	V	$\mathrm{IOH}=-4 \mathrm{~mA}$
1. Applies to all pins except MII pins. Refer to Table 25 for MII I/O Characteristics. 2. Typical values are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing. 3. Does not apply to CLK25M. Refer to Table 26 for clock input levels.						

Table 25: Digital I/O Characteristics - MII Pins (Over Recommended Range)

Parameter	Symbol	Min	Typ	Max	Units	Test Conditions
Input Low voltage	VIL	-	-	. 8	V	-
Input High voltage	VIH	2.0	-	-	V	-
Input current	II	-100	-	100	$\mu \mathrm{A}$	$0.0<\mathrm{VI}<\mathrm{VCC}$
Output Low voltage	VoL	-	-	0.4	V	$\mathrm{IOL}=4 \mathrm{~mA}$
Output High voltage	VoH	2.2	-	-	V	$\mathrm{IOH}=-4 \mathrm{~mA}, \mathrm{VCC}=3.3 \mathrm{~V}$
	VOH	2.4	-	-	V	$\mathrm{IOH}=-4 \mathrm{~mA}, \mathrm{VCC}=5.0 \mathrm{~V}$
Driver output resistance (Line driver output enabled)	Ro^{1}	50	100	200	Ω	Vcc $=3.3 \mathrm{~V}$
	Ro^{1}	50	100	200	Ω	$\mathrm{VCC}=5.0 \mathrm{~V}$
1. Parameter is guaranteed by design; not subject to production testing.						

Table 26: Required CLK25M Characteristics

Parameter	Sym	Min	Typ	Max	Units	Test Conditions
Input Low voltage	VIL	-	-	.8	V	-
Input High voltage	VIH	2.0	-	-	V	-
Input clock frequency tolerance 1	$\Delta \mathrm{f}$	-	-	± 100	ppm	Clock frequency is 25 MHz
Input clock duty cycle 1	TDC	40	-	60	$\%$	-
1. Parameter is guaranteed by design; not subject to production testing.						

Table 27: Low-Voltage Fault Detect Characteristics

Parameter	Sym	Min	Typ 1	Max	Units	Test Conditions
Detect fault threshold	VLT	3.4	-	4.0	V	-
Clear fault threshold	VLH	4.1	-	4.7	V	-

1. Typical values are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.

Table 28: 100BASE-TX Transceiver Characteristics (Over Recommended Range)

Parameter	Sym	Min	Typ	Max	Units	Test Conditions
Peak differential output voltage	VP	0.95	-	1.05	V	Note 2
Signal amplitude symmetry	Vss	98	-	102	$\%$	Note 2
Signal rise/fall time	TRF	3.0	-	5.0	ns	Note 2
Rise/fall time symmetry	TRFS	-	-	0.5	ns	Note 2
Jitter (measured differentially)	-	-	0.7	1.4	ns	-
Duty cycle distortion	-	-	-	$+/-0.5$	ns	Offset from 16ns pulse width at 50% of pulse peak
Overshoot	Vo	-	-	5	$\%$	-

[^2]Table 29: 100BASE-FX Transceiver Characteristics (Over Recommended Range)

| Parameter | Sym | Min | Typ1 | Max | Units | Test Conditions | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transmitter | | | | | | | |
| Peak differential output voltage
 (single ended) | VoP | 0.6 | - | 1.5 | V | - | |
| Signal rise/fall time | TRF | - | - | 1.6 | ns | $10<->90 \%$ | 2.0 pF load |
| Jitter (measured differentially) | - | - | - | 1.3 | ns | - | |
| Receiver | | | | | | | |
| Peak differential input voltage | VIP | 0.55 | - | 1.5 | V | | |
| Common mode input range | VCMIR | 2.25 | - | VCC -0.5 | V | - | |
| 1. Typical values are at $25^{\circ}{ }^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing. | | | | | | | |

Table 30: 10BASE-T Transceiver Characteristics (Over Recommended Range)

| Parameter | Sym | Min | Typ | Max | Units | Test Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Transmitter | | | | | | |
| Peak differential
 output voltage | Vop | 2.2 | 2.5 | 2.8 | V | With specified transformer, line
 replaced by $100 \Omega(\pm 1 \%)$ resistor |
| Link transmit period | - | 8 | - | 24 | ms | |
| Transmit timing jitter added by
 the MAU and PLS sections ${ }^{2,3}$ | - | 0 | 2 | 11 | ns | After line model specified by IEEE
 802.3 for 10BASE-T MAU |

Figure 25: MII - 100BASE-TX Receive Timing

Table 31: MII-100BASE-TX Receive Timing Parameters (Over Recommended Range)

Parameter	Sym	Min	Typ"	Max	Units
RXD, RX_DV, RX_ER setup to RX_CLK High	t 1	10	-	-	ns
RXD, RX_DV, RX_ER hold from RX_CLK High	t 2	5	-	-	ns
CRS asserted to RXD<3:0>, RX_DV	t 4	-	8	-	BT
Receive start of "J" to CRS asserted	t 6	0	$15-19$	20	BT
Receive start of "T" to CRS de-asserted	t 7	13	$23-27$	28	BT
Receive start of "J" to COL asserted	t 8	0	$15-19$	20	BT
Receive start of "T" to COL de-asserted	t 9	13	$23-27$	28	BT
1. Typical values are at $25{ }^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.					

Figure 26: MII - 100BASE-TX Transmit Timing
TXX $3: 0>$

Table 32: MII- 100BASE-TX Transmit Timing Parameters (Over Recommended Range)

Parameter	Sym	Min	Typ ${ }^{1}$	Max	Units
TXD<3:0>, TX_EN, TX_ER setup to TX_CLK High	t 1	10	-	-	ns
TXD<3:0>, TX_EN, TX_ER hold from TX_CLK High	t 2	0	-1	-	ns
TX_EN sampled to CRS asserted	t 3	-	2	4	BT
TX_EN sampled to CRS de-asserted	t 4	-	3	16	BT
TX_EN sampled to TPOP out (Tx latency)	t 5	6	9	14	BT
1. Typical values are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.					

Figure 27: MII - 100BASE-FX Receive Timing

Table 33: MII-100BASE-FX Receive Timing Parameters (Over Recommended Range)

Parameter	Sym	Min	Typ"	Max	Units
RXD, RX_DV, RX_ER setup to RX_CLK High	t 1	10	-	-	ns
RXD, RX_DV, RX_ER hold from RX_CLK High	t 2	5	-	-	ns
CRS asserted to RXD<3:0>, RX_DV asserted	t 4	-	8	-	BT
Receive start of "J" to CRS asserted	t 6	0	$13-17$	20	BT
Receive start of "T" to CRS de-asserted	t 7	13	$21-25$	26	BT
Receive start of "J" to COL asserted	t 8	0	$13-17$	20	BT
Receive start of "T" to COL de-asserted	t 9	13	$21-25$	26	BT

1. Typical values are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.

Figure 28: MII - 100BASE-FX Transmit Timing

Table 34: MII- 100BASE-FX Transmit Timing Parameters (Over Recommended Range)

Parameter	Sym	Min	Typ 1	Max	Units
TXD<3:0>, TX_EN, TX_ER setup to TX_CLK High	t 1	10	-	-	ns
TXD<3:0>, TX_EN, TX_ER hold from TX_CLK High	t 2	0	-1	-	ns
TX_EN sampled to CRS asserted	t 3	-	2	4	BT
TX_EN sampled to CRS de-asserted	t 4	-	3	16	BT
TX_EN sampled to FIBOP out (Tx latency)	t 5	6	11	14	BT
1. Typical values are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.					

Figure 29: MII-10BASE-T Receive Timing

Table 35: MII-10BASE-T Receive Timing Parameters (Over Recommended Range)

Parameter	Sym	Min	Typ ${ }^{\mathbf{1}}$	Max	Units
RXD, RX_DV, RX_ER setup to RX_CLK High	t 1	10	-	-	ns
RXD, RX_DV, RX_ER hold from RX_CLK High	t 2	10	-	-	ns
TPI in to RXD out (Rx latency)	t 3	-	-	73^{2}	BT
CRS asserted to RXD, RX_DV, RX_ER asserted	t 4	0	-	69^{2}	BT
RXD, RX_DV, RX_ER de-asserted to CRS de-asserted	t 5	0	$2.5-5.5$	6	BT
TPI in to CRS asserted	t 6	0	4	5	BT
TPI quiet to CRS de-asserted	t 7	0	18	19	BT
TPI in to COL asserted	t 8	0	4	5	BT
TPI quiet to COL de-asserted	t 9	0	18	19	BT
1. Typical values are at 25 ${ }^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing. 2. CRS is asserted. RXD/RX_DV are driven at the start of SFD (64 BT).					

Figure 30: MII-10BASE-T Transmit Timing

Table 36: MII-10BASE-T Transmit Timing Parameters (Over Recommended Range)

Parameter	Sym	Min	Typ 1	Max	Units
TXD, TX_EN, TX_ER setup to TX_CLK High	t 1	10	-	-	ns
TXD, TX_EN, TX_ER hold from TX_CLK High	t 2	0	-1	-	ns
TX_EN sampled to CRS asserted	t 3	-	2	4	BT
TX_EN sampled to CRS de-asserted	t 4	-	$8-11$	-	BT
TX_EN sampled to TPO out (Tx latency)	t 5	-	$3-5$	-	BT
1. Typical values are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.					

Figure 31: 10BASE-T SQE (Heartbeat) Timing

Table 37: 10BASE-T SQE (Heartbeat) Timing Parameters (Over Recommended Range)

Parameter	Sym	Min $^{\text {Typ }}{ }^{\mathbf{1}}$	Max	Units	
COL (SQE) delay after TX_EN off	t 1	0.65	1.0	1.6	$\mu \mathrm{~s}$
COL (SQE) pulse duration	t 2	.5	1.0	1.5	$\mu \mathrm{~s}$

1. Typical values are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.

Figure 32: 10BASE-T Jab and Unjab Timing

Table 38: 10BASE-T Jab and Unjab Timing Parameters (Over Recommended Range)

Parameter	Sym	Min	Typ 1	Max	Units
Maximum transmit time	t 1	20	$96-128^{2}$	150	ms
Unjab time	t 2	250	525	750	ms

[^3]Figure 33: Auto Negotiation and Fast Link Pulse Timing

Figure 34: Fast Link Pulse Timing

Table 39: Auto Negotiation and Fast Link Pulse Timing Parameters (Over Recommended Range)

Parameter	Sym	Min	Typ ${ }^{\mathbf{1}}$	Max	Units
Clock/Data pulse width	t 1	-	100	-	ns
Clock pulse to Data pulse	t 2	55.5	62.5	69.5	$\mu \mathrm{~s}$
Clock pulse to Clock pulse	t 3	111	125	139	$\mu \mathrm{~s}$
FLP burst width	t 4	-	2	-	ms
FLP burst to FLP burst	t 5	8	12	24	ms
Clock/Data pulses per burst	-	17	-	33	ea
1. Typical values are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.					

Figure 35: MDIO Timing when Sourced by STA

Figure 36: MDIO Timing when Sourced by PHY

Table 40: MII Timing Parameters (Over Recommended Range)

Parameter	Sym	Min	Typ 1	Max	Units	Test Conditions
MDIO setup before MDC	-	10	-	-	ns	When sourced by STA
MDIO hold after MDC	-	10	-	-	ns	When sourced by STA
MDC to MDIO output delay	-	0	27	300	ns	When sourced by PHY

1. Typical values are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.

Figure 37: Power Down Timing
\square
Table 41: Power Down Timing Parameters (Over Recommended Range)

Parameter	Sym	Min	Typ ${ }^{1}$	Max	Units
Power Down recovery time	tPDR	-	50	-	ms
1. Typical values are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.					

Figure 38: Serial LED Timing

Table 42: Serial LED Timing Parameters (Over Recommended Range)

Parameter	Symbol	Min	Typ ${ }^{1}$	Max	Units
LEDENA setup to LEDCLK falling edge	tena1	5	12	-	ns
LEDENA hold from LEDCLK falling edge	tena2	15	21	-	ns
LEDDAT setup to LEDCLK falling edge	tdat1	5	12	-	ns
LEDDAT hold from LEDCLK falling edge	tdat2	15	21	-	ns

1. Typical values are at $25^{\circ} \mathrm{C}$ and are for design aid only; they are not guaranteed and not subject to production testing.

REGISTER DEFINITIONS

The LXT974A/975A register set includes a total of 48 16-bit registers, 12 registers per port. Refer to Table 43 for a complete register listing.

- Seven base registers (0 through 6) are defined in accordance with the "Reconciliation Sublayer and Media Independent Interface" and "Physical Layer Link Signaling for 10/100 Mbps Auto-Negotiation" sections of the IEEE 802.3 specification (Register 7, Next Page, is not supported).
- Five additional registers (16 through 20) are defined in accordance with the IEEE 802.3 specification for adding unique chip functions.

Table 43: Register Set

Address	Register Name	Bit Assignments
0	Control Register	Refer to Table 44
1	Status Register	Refer to Table 45
2	PHY Identification Register 1	Refer to Table 46
3	PHY Identification Register 2	Refer to Table 47
4	Auto-Negotiation Advertisement Register	Refer to Table 48
5	Auto-Negotiation Link Partner Ability Register	Refer to Table 49
6	Auto-Negotiation Expansion Register	Refer to Table 50
16	LED Configuration Register	Refer to Table 51
17	Interrupt Enable Register	Refer to Table 52
18	Interrupt Status Register	Refer to Table 53
19	Port Configuration Register	Refer to Table 54
20	Port Status Register	Refer to Table 55

Table 44: Control Register

Bit	Name	Description	Type ${ }^{1}$	Default
0.15	Reset	$1=$ Reset port. $0=$ Enable normal operation.	$\begin{gathered} \hline \mathrm{R} / \mathrm{W} \\ \mathrm{SC} \end{gathered}$	0
0.14	Loopback	1 = Enable loopback mode. $0=$ Disable loopback mode.	R/W	0
0.13	Speed Selection	$\begin{aligned} & 1=100 \mathrm{Mbps} . \\ & 0=10 \mathrm{Mbps} . \end{aligned}$	R/W	Note 2
0.12	Auto-Negotiation Enable	$1=$ Enable auto-negotiate process (overrides speed select and duplex mode bits). $0=$ Disable auto-negotiate process.	R/W	Note 3
0.11	Power Down	1 = Enable power down. $0=$ Enable normal operation.	R/W	Note 4
0.10	Isolate	1 = Electrically isolate port from MII. $0=$ Normal operation.	R/W	Note 5
0.9	Restart Auto- Negotiation	$1=$ Restart auto-negotiation process. $0=$ Normal operation.	$\begin{gathered} \hline \mathrm{R} / \mathrm{W} \\ \mathrm{SC} \end{gathered}$	Note 6
0.8	Duplex Mode	1 = Enable full-duplex. $0=$ Enable half-duplex.	R/W	Note 7
0.7	Collision Test	$1=$ Enable COL signal test. $0=$ Disable COL signal test.	R/W	Note 8
0.6:4	Transceiver Test Mode	Not supported.	RO	0
0.3	Master-Slave Enable	Not supported.	RO	0
0.2	Master-Slave Value	Not supported.	RO	0
0.1:0	Reserved	Write as 0; ignore on read.	R/W	N/A
1. $\mathrm{R} / \mathrm{W}=\mathrm{Read} / \mathrm{Write}$ RO = Read Only SC = Self Clearing 2. If auto-negotiation is enabled, this bit is ignored. If auto-negotiation is disabled, the default value of bit 0.13 is determined by CFG_0. 3. If SD_TXn is tied High or to a 5V PECL input (FX Mode), the default value of bit $0.12=0$. If SD_TXn is tied Low (TP Mode), the default value of bit 0.12 is determined by AUTOENA. 4. The LXT974A/975A will internally hold all set values of the configuration registers upon exiting power down mode. A delay of 500 ns minimum is required from the time power down is cleared until any register can be written. 5. The default value of bit 0.10 is determined by pin TRSTE n. 6. If auto-negotiation is enabled, the default value of bit 0.9 is determined by CFG_0. If auto-negotiation is disabled, the bit is ignored. 7. If auto-negotiation is enabled, this bit is ignored. If auto-negotiation is disabled and the port is operating in TX mode, the default value of bit 0.8 is determined by pin FDE. If auto-negotiation is disabled and the port is operating in FX mode, the default value of bit 0.8 is determined by pin FDE_FX. 8. This bit is ignored unless loopback is enabled (bit $0.14=1$).				

Table 45: Status Register (Address 1)

Bit	Name	Description	Type ${ }^{1}$	Default
1.15	100BASE-T4	Not supported.	RO	0
1.14	100BASE-X Full-Duplex	1 = Port able to perform full-duplex 100BASE-X.	RO	1
1.13	100BASE-X Half-Duplex	1 = Port able to perform half-duplex 100BASE-X.	RO	1
1.12	10 Mbps Full- Duplex	1 = Port able to operate at 10 Mbps in full-duplex mode.	RO	1
1.11	10 Mbps Half-Duplex	1 = Port able to operate at 10 Mbps in half-duplex mode.	RO	1
1.10	100BASE-T2 Full-Duplex	Not supported.	RO	0
1.9	100BASE-T2 Half-Duplex	Not supported.	RO	0
1.8	Reserved	Ignore on read.	RO	0
1.7	Master-Slave Configuration Fault	Not supported.	RO	0
1.6	MF Preamble Suppression	$0=$ Port will not accept management frames with preamble suppressed.	RO	0
1.5	Auto-Negotiation Complete	1 = Auto-negotiation process complete. $0=$ Auto-negotiation process not complete.	RO	0
1.4	Remote Fault	$1=$ Remote fault condition detected. $0=$ No remote fault condition detected.	RO/LH	0
1.3	Auto-Negotiation Ability	1 = Port is able to perform auto-negotiation.	RO	1
1.2	Link Status	$\begin{aligned} & 1=\text { Link is up. } \\ & 0=\text { Link is down. } \end{aligned}$	RO/LL	0
1.1	Jabber Detect (10BASE-T Only)	$\begin{aligned} & 1=\text { Jabber condition detected. } \\ & 0=\text { No jabber condition detected. } \end{aligned}$	RO/LH	0
1.0	Extended Capability	1 = Extended register capabilities.	RO	1
1.$\begin{aligned} & \text { RO = Read Only } \\ & \mathrm{LL}=\text { Latching Low } \end{aligned}$$\text { LH }=\text { Latching High }$				

Table 46: PHY Identification Register 1 (Address 2)

Bit	Name	Description	Type 1	Default
$2.15: 0$	PHY ID Number	The PHY identifier composed of bits 3 through 18 of the OUI.	RO	7810 hex

Table 47: PHY Identification Register 2 (Address 3)

Bit	Name	Description	Type ${ }^{1}$	Default
$3.15: 10$	PHY ID number	The PHY identifier composed of bits 19 through 24 of the OUI.	RO	000000
$3.9: 4$	Manufacturer's model number	6bits containing manufacturer'spart number.	RO	$000100-$ LXT974A $000101-$ LXT975A
$3.3: 0$	Manufacturer's revision number	4 bits containing manufacturer's revision number.	RO	0000
1. RO $=$ Read Only				

Figure 39: PHY Identifier Bit Mapping

The Level One OUI is 00207B hex.

Table 48: Auto Negotiation Advertisement Register (Address 4)

Bit	Name	Description	Type ${ }^{1}$	Default
4.15	Next Page	Not supported.	RO	0
4.14	Reserved	Ignore.	RO	0
4.13	Remote Fault	$1=$ Remote fault. $0=$ No remote fault.	R/W	0
4.12:11	Reserved	Ignore.	R/W	0
4.10	Pause	$1=$ Pause operation is enabled for full-duplex links. $0=$ Pause operation is disabled.	R/W	0
4.9	100BASE-T4	$1=100 \mathrm{BASE}-\mathrm{T} 4$ capability is available. $0=100 \mathrm{BASE}-\mathrm{T} 4$ capability is not available. (The LXT974A/975A does not support 100BASE-T4 but allows this bit to be set to advertise in the Auto-Negotiation sequence for 100BASE-T4 operation. An external 100BASE-T4 transceiver could be switched in if this capability is desired.)	R/W	0
4.8	100BASE-TX full-duplex	$1=$ Port is 100BASE-TX full-duplex capable. $0=$ Port is not 100BASE-TX full-duplex capable.	R/W	Note 2
4.7	100BASE-TX	$1=$ Port is 100BASE-TX capable. $0=$ Port is not 100BASE-TX capable.	R/W	Note 3
4.6	10BASE-T full-duplex	$\begin{aligned} & 1=\text { Port is } 10 \text { BASE-T full-duplex capable. } \\ & 0=\text { Port is not } 10 \text { BASE-T full-duplex capable. } \end{aligned}$	R/W	Note 4
4.5	10BASE-T	$\begin{aligned} & 1=\text { Port is } 10 \mathrm{BASE}-\mathrm{T} \text { capable } . \\ & 0=\text { Port is not } 10 \mathrm{BASE}-\mathrm{T} \text { capable } . \end{aligned}$	R/W	Note 5
4.4:0	Selector Field, S<4:0>	$\begin{aligned} & \langle 00001\rangle=\text { IEEE } 802.3 . \\ & \langle 00010\rangle=\text { IEEE 802.9 ISLAN-16T. } \\ & \langle 00000\rangle=\text { Reserved for future Auto-Negotiation development. } \\ & \langle 11111\rangle=\text { Reserved for future Auto-Negotiation development. } \\ & \text { Unspecified or reserved combinations should not be transmitted. } \end{aligned}$	R/W	00001
1. $\mathrm{R} / \mathrm{W}=$ Read/Write RO = Read Only 2. The default value of bit 4.8 is determined by FDE ANDed with CFG_2. 3. The default value of bit 4.7 is determined by CFG_2. 4. The default value of bit 4.6 is determined by FDE AND'ed with CFG_1. 5. The default value of bit 4.5 is determined by CFG_1.				

Table 49: Auto Negotiation Link Partner Ability Register (Address 5)

Bit	Name	Description	Type ${ }^{1}$	Default
5.15	Next Page	$1=$ Link Partner has ability to send multiple pages. $0=$ Link Partner has no ability to send multiple pages.	RO	N/A
5.14	Acknowledge	```1 = Link Partner has received Link Code Word from LXT974A/ 975A. 0 = Link Partner has not received Link Code Word from the LXT974A/975A.```	RO	N/A
5.13	Remote Fault	$1=$ Remote fault. $0=$ No remote fault.	RO	N/A
5.12:11	Reserved	Ignore.	RO	N/A
5.10	Pause	1 = Pause operation is enabled for link partner. $0=$ Pause operation is disabled.	RO	N/A
5.9	100BASE-T4	$\begin{aligned} & 1=\text { Link Partner is } 100 \text { BASE-T4 capable. } \\ & 0=\text { Link Partner is not } 100 \mathrm{BASE}-\mathrm{T} 4 \text { capable. } \end{aligned}$	RO	N/A
5.8	100BASE-TX full-duplex	$1=$ Link Partner is 100BASE-TX full-duplex capable. $0=$ Link Partner is not 100BASE-TX full-duplex capable.	RO	N/A
5.7	100BASE-TX	$\begin{aligned} & 1=\text { Link Partner is 100BASE-TX capable. } \\ & 0=\text { Link Partner is not } 100 B A S E-T X ~ c a p a b l e . ~ \end{aligned}$	RO	N/A
5.6	10BASE-T full-duplex	$1=$ Link Partner is 10BASE-T full-duplex capable. $0=$ Link Partner is not 10BASE-T full-duplex capable.	RO	N/A
5.5	10BASE-T	$\begin{aligned} & 1=\text { Link Partner is } 10 \text { BASE-T capable. } \\ & 0=\text { Link Partner is not } 10 B A S E-T \text { capable } . \end{aligned}$	RO	N/A
5.4:0	Selector Field $S<4: 0>$	$\langle 00001\rangle=\text { IEEE 802.3. }$ <00010> = IEEE 802.9 ISLAN-16T. <00000> = Reserved for future Auto-Negotiation development. <11111> = Reserved for future Auto-Negotiation development. Unspecified or reserved combinations shall not be transmitted.	RO	N/A
1. $\mathrm{RO}=$ Read Only				

Table 50: Auto Negotiation Expansion (Address 6)

Bit	Name	Description	Type ${ }^{1}$	Default
6.15:5	Reserved	Ignore on read.	RO	0
6.4	Parallel Detection Fault	$1=$ Parallel detection fault has occurred. $0=$ Parallel detection fault has not occurred.	$\begin{aligned} & \mathrm{RO} / \\ & \mathrm{LH} \end{aligned}$	0
6.3	Link Partner Next Page Able	$1=$ Link partner is next page able. $0=$ Link partner is not next page able.	RO	0
6.2	Next Page Able	Not supported.	RO	0
6.1	Page Received	$1=$ Three identical and consecutive link code words have been received from link partner. $0=$ Three identical and consecutive link code words have not been received from link partner.	$\begin{aligned} & \hline \mathrm{RO} \\ & \mathrm{LH} \end{aligned}$	0
6.0	Link Partner A/N Able	$1=$ Link partner is auto-negotiation able. $0=$ Link partner is not auto-negotiation able.	RO	0
1. $\mathrm{RO}=$ Read Only $\mathrm{LH}=$ Latching High				

Table 51: LED Configuration Register (Address 16, Hex 10)

Bit	Name			Description	Type ${ }^{1}$	Default
16.15:12	User Defined	No effect on chip operation.			R/W	N/A
16.11:9	Reserved	Ignore on read.			RO	N/A
16.8	TX Pulse Tuning	1 = Faster rise time - May be used to adjust output pulse to match magnetic performance. $0=$ Normal Operation - Provides best match for most magnetics.			R/W	0
16.7:6	LED_2 Select	Determine condition indicated by LED_2			R/W	00
		bit 7	bit 6	Indication Setting		
		0	0	LEDn_2 indicates Link		
		0	1	LEDn_2 indicates Half-Duplex Status		
		1	0	LEDn_2 indicates 100 Mbps		
		1	1	LEDn_2 indicates Collision		
16.5:4	LED_1 Select	Determine condition indicated by LED_1			R/W	00
		bit 5	bit 4	Indication Setting		
		0	0	LED $n _1$ indicates Receive Activity		
		0	1	LEDn_1 indicates Link		
		1	0	LEDn_1 indicates Half-Duplex Status		
		1	1	LEDn_1 indicates 100 Mbps		
16.3:2	LED_0 Select	Determine condition indicated by LED_0			R/W	00
		bit 3	bit 2	Indication Setting		
		0	0	LEDn_0 indicates Transmit Activity		
		0	1	LEDn_0 indicates Receive Activity		
		1	0	LEDn_0 indicates Link		
		1	1	LEDn_0 indicates Half-Duplex Status		
16.1	Link Algorithm	1 = Enhanced link algorithm - Link goes down when 12 idle symbols in a row are not received within 1 to 2 ms . $0=$ Standard link algorithm - Link goes down when symbol error rate is greater than 64/1024.			R/W	0
16.0	LED Extension	$1=$ Disable extension of LED active time for LED $n_{-}\langle 2: 0\rangle$. $0=$ Enable extension of LED active time for LEDn_<2:0>.			R/W	0

Table 52: Interrupt Enable Register (Address 17, Hex 11)

Bit	Name	Description	Type 1	Default
$17.15: 2$	Reserved	Write as 0; ignore on read.	R/W	N/A
17.1	INTEN	$1=$ Enable interrupts. Must be enabled for bit 17.0 or 19.12 to be effective. $0=$ Disable interrupts.	R/W	0
17.0	TINT	$1=$ Forces MDINT Low and sets bit $18.15=1$. Also forces interrupt pulse on MDIO when bit $19.12=1$. $0=$ Normal operation. This bit is ignored unless the interrupt function is enabled $(17.1=1)$.	R/W	0

Table 53: Interrupt Status Register (Address 18, Hex 12)

Bit	Name	Description	Type 1	Default $^{\|c\|}$
18.15	MINT	1 = Indicates MII interrupt pending. $0=$ Indicates no MII interrupt pending. This bit is cleared by reading Register 1 followed by reading Register 18.	RO	N/A
$18.14: 0$	Reserved	Ignore	RO	0
RO $=$ Read Only				

Table 54: Port Configuration Register (Address 19, Hex 13)

Bit	Name	Description	Type ${ }^{1}$	Default
19.15	Reserved	Write as 0; ignore on read.	R/W	N/A
19.14	Txmit Test Enable (100BASETX)	$1=100 \mathrm{BASE}-\mathrm{T}$ transmit test enabled (Port will transmit data regardless of receive status). $0=$ Normal operation.	R/W	0
19.13	Reserved	Write as 0; ignore on read.	R/W	N/A
19.12	MDIO_INT	$1=$ Enable interrupt signaling on MDIO (if $17.1=1$). $0=$ Normal operation (MDIO Interrupt disabled). Bit is ignored unless the interrupt function is enabled $(17.1=1)$.	R/W	0
19.11	TP Loopback Enable (10BASE-T)	1 = Disable 10BT Loopback - Data transmitted by the MAC will not loopback to the RXD and RX_DV pins. Only CRS is looped back. $0=$ Enable 10BT Loopback - Preamble, SFD, and data are directly looped back to the MII.	R/W	0
19.10	SQE Disable (10BASE-T)	$\begin{aligned} & 1=\text { Normal operation (SQE enabled). } \\ & 0=\text { Disable SQE. } \end{aligned}$	R/W	0
19.9	Jabber Disable (10BASE-T)	1 = Disable jabber. $0=$ Normal operation (jabber enabled).	R/W	0
19.8	Link Test Enable (10BASE-T)	$1=$ Disable 10BASE-T link integrity test. $0=$ Normal operation (10BASE-T link integrity test enabled).	R/W	Note 2
19.7:6	Reserved	Write as 0; ignore on read.	R/W	N/A
19.5	Advance TX Clock	$1=$ TX clock is advanced relative to TXD $<3: 0>$ and TX_ER by $1 / 2$ TX_CLK cycle. $0=$ Normal operation.	R/W	0
19.4	Reserved	Write as 0; ignore on read.	R/W	N/A
19.3	Scrambler Bypass (100BASE-T only)	$1=$ Bypass transmit scrambler and receive descrambler. $0=$ Normal operation (scrambler and descrambler enabled).	R/W	Note 3
19.2	100BASE-FX	$\begin{aligned} & 1=\text { Enable 100BASE fiber interface. } \\ & 0=\text { Enable 100BASE twisted pair interface. } \end{aligned}$	R/W	Note 4
19.1	Reserved	Write as 0; ignore on read.	R/W	0
19.0	Transmit Disconnect	$\begin{aligned} & 1=\text { Disconnect TP transmitter from line } . \\ & 0=\text { Normal operation. } \end{aligned}$	R/W	0
1. $\mathrm{R} / \mathrm{W}=$ Read/Write 2. If auto-negotiation is disabled, the default value of bit 19.8 is determined by pin 115 (CFG_1). If CFG_1 is High, the bit $19.8=1$. If CFG_1 is Low, the default value of bit $19.8=0$. If auto-negotiation is enabled, the default value of bit $19.8=0$. 3. The default value of bit 19.3 is determined by BYPSCR. If BYPSCR is High, the default value of bit $19.3=1$. If BYPSCR is Low, the default value of bit $19.3=0$. 4. The default value of bit 19.2 is determined by the $\mathrm{SD} / \overline{\mathrm{TP}} n$ pin for the respective port. If $\mathrm{SD} / \overline{\mathrm{TP}} n$ is tied Low, the default value of bit $19.2=0$. If $\mathrm{SD} / \overline{\mathrm{TP}} n$ is not tied Low, the default value of bit $19.2=1$. On the LXT975A, this bit is ignored on ports 0 and 2 that operate in twisted-pair mode only.				

Table 55: Port Status Register (Address 20, Hex 14)

Bit	Name	Description	Type ${ }^{1}$	Default
20.15:14	Reserved	Write as 0, ignore on read.	R/W	N/A
20.13	Link	$1=$ Link is up. $0=$ Link is down. Link bit 20.13 is a duplicate of bit 1.2, except that it is a dynamic indication, whereas bit 1.2 latches Low.	RO	0
20.12	Duplex Mode	1 = Full-Duplex. $0=$ Half-Duplex.	RO	Note 2
20.11	Speed	$\begin{aligned} & 1=100 \mathrm{Mbps} \text { operation. } \\ & 0=10 \mathrm{Mbps} \text { operation. } \end{aligned}$	RO	Note 2
20.10	Reserved	Ignore.	RO/LH	N/A
20.9	Auto- Negotiation Complete	$1=$ Auto-negotiation process complete. $0=$ Auto-negotiation process not complete. Auto-Negotiation Complete bit 20.9 is a duplicate of bit 1.5.	RO/LH	0
20.8	Page Received	$1=$ Three identical and consecutive link code words received. $0=$ Three identical and consecutive link code words not received. Page Received bit 20.8 is a duplicate of bit 6.1.	RO/LH	0
20:7	Reserved	Write as 0, ignore on read.	R/W	0
20.6	Stream cipher lock (100BASE-TX only)	$\begin{aligned} & 1=\text { Stream cipher locked. } \\ & 0=\text { Stream cipher not locked. } \end{aligned}$	RO	0
20.5	Symbol Error	$1=$ Symbol error detected. $0=$ No symbol error detected.	$\begin{gathered} \mathrm{RO} / \\ \mathrm{LH} \end{gathered}$	N/A
20.4	MLT3 Encoding Error	$1=$ MLT3 encoding error detected. $0=$ No MLT3 encoding error detected.	$\begin{gathered} \mathrm{RO} / \\ \mathrm{LH} \end{gathered}$	N/A
20.3	Reserved	Ignore.	RO	N/A
20.2	Low-Voltage Fault	1 = Low-voltage fault on VCC has occurred. $0=$ No fault.	$\begin{gathered} \mathrm{RO} / \\ \mathrm{LH} \end{gathered}$	N/A
20.1	Reserved	Write as 0, ignore on read.	R/W	N/A
20.0	Reserved	Ignore.	$\begin{gathered} \mathrm{RO} / \\ \mathrm{LH} \end{gathered}$	N/A
1. $\begin{aligned} & \text { R/W = Read /Write } \\ & \text { RO = Read Only } \\ & \text { LH = Latching High } \end{aligned}$ 2. Bits 20.12 and 20.11 reflect the current operating mode of the LXT974A/975A.				

PACKAGE SPECIFICATION

Figure 40: LXT974A/975A Package Specification

REVISION HISTORY

Table 56: Changes From Revision 1.2 to Revision 1.3

Section	Page	Change	Text
Tables 22 \& 23 Magnetic Manufacturers	34	Update	Delete Tables 22 and 23 and re-number all subsequent tables. Refer to Application Note 73, Magnetic Manufacturers Cross Reference Guide.
Figure 32 10BASE-T Jabber	51	Update	Correct COL signal assert duration (t2) in the figure only.
Table 51	62	Update	Change Register 16, bits 11:9 to reserved and read only.
LED Configurations			

Table 57: Changes From Revision 1.1 to Revision 1.2

Section	Page	Change	Text
All	All	Update	Change product part numbers from LXT974 and LXT975 to LXT974A and LXT975A.
Tables 50 and 51 Link Partner Ability	60,61	Update	Add pause capability to Registers 4.10 and 5.10.
Tables 34, 36, 38 Transmit Timing	$47,49,51$	Update	Change TXD<3:0>, TX_EN, TX_ER hold time (2 ns) Min to (0 ns) Min.
Figure 22 Supply Filtering	39	Update	Delete alternate 400

Table 58: Changes From Revision 1.0 to Revision 1.1

Section	Page	Change	Text
General Description and Features	1	Update	Add heat spreader and LXT974AHC and LXT975AHC to the data sheet. Add feature bullet, "100BASE-TX line performance >130 meters. Clarify temp range by adding ambient to text.
Table 1 974 SD/TP Signal Descriptions Table 4 975 SD/TP Signal Descriptions	$5 \& 7$	Update	Delete, "The SD/TP n pins have internal pull-downs and will default to global configuration..." Move listed hardware control pins to TP Select section.
Introduction	14	Update	Change line performance from "up to 100 meters" to "greater than 130 meters".
Enhanced Magnetic Mode	15	Update	Delete enhanced magnetic mode discussion to magnetics information section.
Transmit Clock	16	Update	Add master and advanced clock discussion.
Loopback	17	Update	Add Operational Loopback and Test Loopback discussion. Add Table 13 (Test Loopback Operation) and renumber all subsequent tables. Add Figure 6 (Loopback Paths) and renumber all subsequent figures.
Table 17 Configuration without Auto-Negotiation	20	Update	Simplify Notes 3 and 5.
Figure 12 100BASE-TX Data Flow	23	Update	Correct note 2. Scrambler can be bypassed setting (19.3=1)
Pwr Supply Filtering Ground Filtering Layout Considerations	$31 \& 32$	Update	Rewrite Pwr Filtering and Pwr/Gnd Plane Layout Considerations. Replace ground filtering discussion with ground noise. (Remove placement of ferrite beads from the ground plane layout recommendations. Correct min current rating from 750 mA to 500 mA and bead recommendation to 750 mA . Add first bullet to General Design Guidelines, "Fill in unused areas of signal planes with solid copper..."
Twisted-Pair IF	33	Update	Add bullet, "Improve EMI performance by filtering the output centertap" and modify relationship to ground plane.

an Intel company

Table 58: Changes From Revision 1.0 to Revision 1.1

Section	Page	Change	Text		
Magnetics Information	34	Update	$\begin{array}{l}\text { Note 1 - Remove enhanced and replace with improved } \\ \text { return loss performance. } \\ \text { Change Min return loss for improved magnetics @ 80 } \\ \text { MHz from -16 dB to -15 dB. }\end{array}$		
$\begin{array}{l}\text { Tables 22 and 23 } \\ \text { Magnetic Manufacturers }\end{array}$	35	Update	$\begin{array}{l}\text { Remove Belfuse part numbers S558-5999-H2, H3, H4, } \\ \text { and H5 (enhanced magnetics). Remove enhanced footnote } \\ \text { from HALO magnetics and TG110-S422NX and -S462NX } \\ \text { devices. Add Delta devices; LF8713, LF8701, and }\end{array}$		
LF8251D(enhanced). Change note 1 from 'enhanced' to					
'magnetics with improved return loss'.				$\}$	Figure 20
:---					

Table 58: Changes From Revision 1.0 to Revision 1.1

Section	Page	Change	Text
Table 38 10BASE-T Transmit Timing	51	Update	Add typical hold spec (-1 ns). Change hold time (5 ns) Min to (2 ns) Min. Change CRS "on" from 0 BT to 2 BT typ. Change CRS "Off" from 8 BT to 8-11 BT typ.
Table 42 MII Timing	54	Update	Change MDIO delay typ from 10 ns to 27 ns.
Table 46 Control Register	57	Update	Correct note 2 - When SD_TXn is tied High, bit 0.12 = 0. When SD_TXn is tied Low, bit 0.12 is determined by AUTOENA.
Table 44 Serial LED Timing	55	Update	Change serial LED specs from 10/20 ns to 5/15 ns Min and $15 / 24$ ns to 12/21 ns Typical.
Table 53 LED Configuration Reg	63	Update	Change register name to TX Pulse Tuning and description.
Table 54 Interrupt Enable Reg	64	Update	Bit 17.1 - Remove text, "Enable Half/Full-duplex indica- tions on pin 98" and add "Disable interrupts."
Table 56 Port Configuration Reg	65	Update	Correct note 3 - If BYPSCR is High, bit 19.3 = 1. If BYPSCR is Low, bit 19.3 = 0.
Figure 40 Package Specification	67	Update	Add heat spreader and ordering information to package diagram.
Various	-	edit	Various minor editing.

NOTES

The Americas

WEST
Eastern Area Headquarters \& Western Area Northeastern Regional Office Headquarters
234 Littleton Road, Unit 1A
Westford, MA 01886
Tel: (508) 692-1193
Fax: (508) 692-1244

3375 Scott Blvd., \#338
Santa Clara, CA 95054
Tel: (408) 496-1950
Fax: (408) 496-1955

International

ASIA/PACIFIC

Asia / Pacific Area
Headquarters
101 Thomson Road
United Square \#08-01
Singapore 307591
Tel: +65 3536722
Fax: +65 3536711

South Central Regional Office

2340 E. Trinity Mills Road Suite 306
Carrollton, TX 75006
Tel: (972) 418-2956
Fax: (972) 418-2985

Southwestern

Regional Office
28203 Cabot Road
Suite 300
Laguna Niguel, CA 92677
Tel: (714) 365-5655
Fax: (714) 365-5653

Central Asia/Pacific Regional Office

Suite 305, 4F-3, No. 75,
Hsin Tai Wu Road
Sec. 1, Hsi-Chih,
Taipei County, Taiwan
Tel: +886 226982525
Fax: +886 226983017
Northern Asia/Pacific
Regional Office
Nishi-Shinjuku, Mizuma
Building 8F
3-3-13, Nishi-Shinjuku,
Shinjuku-Ku
Tokyo, 160 Japan
Tel: +81 $33347-8630$
Fax: +81 3 3347-8635

EUROPE

European Area

 HeadquartersParc Technopolis - Bat. Zeta 3, avenue du Canada -
Z.A. de Courtaboeuf 91974 Les Ulis Cedex France
Tel: +33 164862828
Fax: +33 160920608
Central and Southern Europe Regional Office
"Regus"
Feringastrasse 6
D-85774 Muenchen-
Unterfoerhring, Germany
Tel: +49 8999216375
Fax: +49 8999216377

Northern Europe

Regional Office
Torshamnsgatan 35
164/40 Kista/Stockholm, Sweden
Tel: +46 87503980
Fax: +46 87503982

Latin/South

America

9750 Goethe Road
Sacramento, CA 95827
USA
Tel: (916) 855-5000
Fax: (916) 854-1102

Revision Date

$1.3 \quad 11 / 98$

Status
Delete magnetic manufacturers tables and change Register 16.11:9 to reserved and read only. Correct COL signal for 10BASE-T Jab timing.

[^4]
[^0]: 1. Refer to Table 15 for basic configurations.
[^1]: 1. Bit 23 is shifted out first.
[^2]: 1. Typical values are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
 2. Measured at the line side of the transformer, line replaced by $100 \Omega(+/-1 \%)$ resistor.
[^3]: 1. Typical values are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
 2. Typical transmit time may be either of these values depending on internal 32 ms clock synchronization.
[^4]: The products listed in this publication are covered by one or more of the following patents. Additional patents pending.
 $5,008,637 ; 5,028,888 ; 5,057,794 ; 5,059,924 ; 5,068,628 ; 5,077,529 ; 5,084,866 ; 5,148,427 ; 5,153,875 ; 5,157,690 ; 5,159,291 ; 5,162,746 ; 5,166,635 ; 5,181,228 ;$ $5,204,880 ; 5,249,183 ; 5,257,286 ; 5,267,269 ; 5,267,746 ; 5,461,661 ; 5,493,243 ; 5,534,863 ; 5,574,726 ; 5,581,585 ; 5,608,341 ; 5,671,249 ; 5,666,129 ; 5,701,099$

 Copyright © 1999 Level One Communications, Inc., an Intel company. Specifications subject to change without notice.
 All rights reserved. Printed in the United States of America.
 PDS-T974A/975A-R1.3-1198

